Página 1 dos resultados de 7 itens digitais encontrados em 0.028 segundos
Resultados filtrados por Publicador: Elsevier

On the influence of silica type on the structural integrity of dense La9.33Si2Ge4O26 electrolytes for SOFCs

Alves, Cátia; Marcelo, Teresa; Oliveira, F. A. Costa; Alves, L. C.; Mascarenhas, João; Trindade, B.
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em //2013 ENG
Relevância na Pesquisa
Apatite-type rare earth based oxides, such as R-doped lanthanum oxides of general formula La9.33(RO4)6O2 with R = Ge, Si, exhibit high ionic conductivity and low activation energy at moderate temperatures, when compared to the yttria-stabilized zirconia electrolyte making them potential materials to be used in the range 500–700 °C, for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this study, dense oxyapatite-based La9.33Si2Ge4O26 electrolytes have been successfully prepared either by electrical sintering at 1400 °C or microwave hybrid sintering at 1350 °C for 1 h from La2O3, SiO2 and GeO2 powders dry milled at 350 rpm for 15 h in a planetary ball mill. The densification behaviour of the apatite-type phase synthesized by mechanical alloying was found to be dependent on the grade of SiO2 used: either pre-milled quartz powder or amorphous nanosized fumed silica. The influence of the silica type on the La9.33Si2Ge4O26 integrity was assessed by dynamic Young's modulus, microhardness and indentation fracture toughness measurements. A good correlation between the degree of densification (as observed by SEM/EDS) and the resulting mechanical properties could be established. Pre-milling of quartz powder has favoured higher densification rates to be attained suggesting that both Fe content...