Página 1 dos resultados de 18179 itens digitais encontrados em 0.016 segundos
Resultados filtrados por Publicador: Universidade Federal de Goiás; BR; UFG; Mestrado em Química; Educação em Química

NANOPARTÍCULAS MAGNÉTICAS FUNCIONALIZADAS COM BICAMADAS DE LAURATO/LAURATO E LAURATO/PLURONIC: ESTUDO DA ASSOCIAÇÃO COM ANFOTERICINA; MAGNETIC NANOPARTICLES FUNCTIONALIZED WITH AMPHOTERICIN B OF BILAYERS LAURATE/LAURATE AND LAURATE/PLURONIC: STUDY OF THE ASSOCIATION WITH AMPHOTERICIN B

SILVA, Joel Rocha da
Fonte: Universidade Federal de Goiás; BR; UFG; Mestrado em Química; Educação em Química Publicador: Universidade Federal de Goiás; BR; UFG; Mestrado em Química; Educação em Química
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
36.76%
Magnetite nanoparticles were prepared by the coprecipitation of ions Fe2+ and Fe3+ using ammonia solution as precipitating agent. Maghemite nanoparticles were prepared by forced oxidation of magnetite nanoparticles in acidic medium using nitrate ions as oxidizing agent. The magnetic nanoparticles were used to the preparation of aqueous magnetic fluids samples by the functionalization of the nanoparticles with bilayers of laurate/laurate and laurate/Pluronic. Aliquots of the magnetic fluids were dried and the resultant powders were characterized by chemical analysis (the contents of ions Fe2+ and Fe3+), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The contents of ions Fe2+ and Fe3+ in all the samples showed that the nanoparticles are not pure magnetite or maghemite phases. X-ray powder diffraction (XRD) indicated the existence of inverse cubic spinel phase, but didn't permit the distinction between magnetite and maghemite phases. Based on the results of chemical and XRD analyses, the nanoparticles could be better characterized as reduced maghemite, which mean maghemite phase containing ions Fe2+. The average sizes of the oxide nanoparticles estimated by XRD were around of 10 nm. FTIR analyses showed that the nanoparticles were functionalized with bilayers of laurate/laurate and laurate/Pluronic. FTIR analyses also were indicative of the maghemite phase. The hydrodynamic size of the functionalized nanoparticles measured by PCS were in the range of 70-90 nm for the samples based on laurate and in the range of 100-200 nm for the samples containing Pluronic. The measurements of zeta potential showed that the magnetic fluids based on laurate bilayers presented better colloidal stability than that one based on bilayers of laurate/Pluronic. On the other hand...