Página 14 dos resultados de 294 itens digitais encontrados em 0.017 segundos

Voltage-dependent Ca2+ influx into right-side-out plasma membrane vesicles isolated from wheat roots: characterization of a putative Ca2+ channel.

Huang, J W; Grunes, D L; Kochian, L V
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 12/04/1994 EN
Relevância na Pesquisa
17.125742%
We report on the identification of a voltage-dependent Ca2+ transport system that mediates Ca2+ influx across the plasma membrane (PM) of wheat (Triticum aestivum) root cells. The experimental approach involved the imposition of transmembrane electrical potentials (via K+ diffusion potentials) in populations of purified, right-side-out PM vesicles isolated from wheat roots. Using 45Ca2+ to quantify Ca2+ influx into the PM vesicles, the voltage-dependent characteristics of Ca2+ transport were found to be similar to those exhibited by L-type voltage-gated Ca2+ channels in animal cells. The putative PM Ca2+ channel opened upon depolarization of the membrane potential, and Ca2+ flux increased to a maximum upon further depolarization and then decreased back to zero upon further successive depolarizations. This channel was found to be selective for Ca2+ over Mg2+, Sr2+, K+, and Na+; was blocked by very low concentrations of La3+; was unaffected by high concentrations of the K+ channel blocker tetraethylammonium; and exhibited Michaelis-Menten-type transport kinetics. Based on these transport properties, we argue that this transport system is a PM Ca2+ channel. We suggest that the use of radiotracer flux analysis of voltage-clamped PM vesicles derived from plant roots is a straightforward approach for the characterization of certain voltage-gated ion channels functioning in cellular membranes of higher plant cells.

Biochemical Identification and Biophysical Characterization of a Channel-Forming Protein from Rhodococcus erythropolis

Lichtinger, Thomas; Reiss, Gila; Benz, Roland
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /02/2000 EN
Relevância na Pesquisa
17.125742%
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large...

Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores.

Saravolac, E G; Taylor, N F; Benz, R; Hancock, R E
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /08/1991 EN
Relevância na Pesquisa
17.125742%
A 43,000 molecular-weight, glucose-inducible, organic acid-repressible protein (OprB) was identified in the outer membrane of Pseudomonas putida. OprB was surface expressed in whole cells, had a high beta-sheet content, and was heat modifiable, as demonstrated by 125I-labeling, circular dichroism spectroscopy, and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. OprB was extracted from outer membrane preparations by using 2% Lubrol PX with 10 mM EDTA and purified by DEAE-Sephacel ion exchange chromatography following ammonium sulfate precipitation. Reconstitution experiments with black lipid membranes showed that OprB formed small, cation-selective pores which bound glucose (KS = 110 mM) and other carbohydrates. However, the binding site of OprB appeared to be distinct from that of the maltodextrin-specific porin LamB from Escherichia coli.

Mechanism of Action of EM 49, Membrane-Active Peptide Antibiotic

Rosenthal, Ken S.; Ferguson, Rod A.; Storm, Dan R.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /12/1977 EN
Relevância na Pesquisa
17.125742%
EM 49 (recently renamed octapeptin) is a membrane-active peptide antibiotic that has been reported to affect the structure of bacterial membranes (K. S. Rosenthal, P. E. Swanson, and D. R. Storm, Biochemistry 15:5783–5792, 1976). In this study, it is shown that the effects of EM 49 on bacterial metabolism are similar to those of uncouplers of oxidative phosphorylation. EM 49 stimulated bacterial respiration within a narrow concentration range corresponding to minimum inhibitory concentrations and inhibited respiration at concentrations comparable to minimum biocidal concentrations. In addition, the peptide increased membrane proton permeability and lowered the adenosine 5′-triphosphate pool size. Parallel studies done with the related antibiotic polymyxin B demonstrated that the two peptides differed considerably in their effects on bacterial respiration. In contrast to EM 49, polymyxin B did not stimulate respiration at any concentration. It is proposed that the primary action of EM 49 is to disrupt the selective ion permeability of the cytoplasmic membrane, thereby relaxing the membrane potential.

Phosphorylation of the Adenosine Triphosphatase in a Deoxycholate-Treated Plasma Membrane Fraction from Corn Roots 1

Briskin, Donald P.; Leonard, Robert T.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /11/1982 EN
Relevância na Pesquisa
17.125742%
The ATP phosphohydrolase (ATPase) activity of a corn (Zea mays L., WF9 × Mo17) root plasma membrane fraction was enriched almost 2-fold by selective extraction with 0.1% (w/v) deoxycholate. The detergent treatment solubilized about 30% of the total membrane protein and some ATP hydrolyzing activity that was not K+-stimulated, but the major portion of the ATPase activity could be pelleted with membranes. The properties of the ATPase associated with the detergent-extracted plasma membrane fraction were similar to those for the ATPase of the untreated plasma membrane fraction with respect to substrate specificity, pH optimum, kinetics with MgATP, ion stimulation, and inhibitor sensitivity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed only minor differences in protein composition resulting from the detergent treatment.

The gamma-aminobutyrate/benzodiazepine receptor from pig brain. Purification and characterization of the receptor complex from cerebral cortex and cerebellum.

Kirkness, E F; Turner, A J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/01/1986 EN
Relevância na Pesquisa
17.125742%
The gamma-aminobutyrate/benzodiazepine-receptor complex has been purified from a Triton X-100 extract of crude synaptic membranes from pig cerebral cortex and cerebellum by a combination of affinity and ion-exchange chromatography. [3H]Flunitrazepam binding activity was purified 2200-fold from cortex with an overall yield of 2%. The dissociation constants for the binding of [3H]muscimol and [3H]flunitrazepam to the receptor complex were 14 +/- 3 nM and 14 +/- 2 nM respectively. The ratio of [3H]muscimol to [3H]flunitrazepam binding sites was in the range 2.2-2.8. There appeared to be no selective inactivation of either binding site during the purification procedure. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed two major polypeptides of Mr 49 000 and 55 000 from both cortex and cerebellum. When the receptor from cortex was photoaffinity labelled with [3H]flunitrazepam, radioactivity was incorporated predominantly into the Mr-49 000 polypeptide, although some radioactivity was detectable in the Mr-55 000 band. The cerebellar receptor was photoaffinity labelled on the 49 000-Mr polypeptide but not on the polypeptide of Mr 55 000. In addition, some radioactivity was detected in a minor polypeptide of Mr 43 000. When purified in the presence of 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate the same major polypeptide components (Mr 49 000 and 55 000) were isolated...

Stretch activation of a toad smooth muscle K+ channel may be mediated by fatty acids.

Ordway, R W; Petrou, S; Kirber, M T; Walsh, J V; Singer, J J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 15/04/1995 EN
Relevância na Pesquisa
17.125742%
1. using standard single channel patch clamp techniques we studied the stretch sensitivity of a 20 pS K(+)-selective channel which is activated by fatty acids and found in freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus. 2. A pulse of suction applied to the back of the patch pipette in order to stretch the membrane resulted in activation of this K+ channel. A train of suction pulses resulted in a gradually increased level of channel activity during each successive pulse, as well as an increase in baseline activity between pulses. This pattern contrasts markedly with many other stretch-activated channels whose activation is limited to the duration of the suction pulse. 3. Application of fatty acids augmented the response to stretch. In contrast, application of 10 microM defatted albumin, which removes fatty acids from membranes, rapidly and reversibly decreased the response to stretch. 4. These results are consistent with the hypothesis that fatty acids which are generated by mechanical stimuli, perhaps by mechanically activated phospholipases, are the intermediaries in activation of certain mechanically sensitive ion channels.

Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.

Bhat, M B; Zhao, J; Takeshima, H; Ma, J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /09/1997 EN
Relevância na Pesquisa
17.125742%
The ryanodine receptor (RyR) is one of the key proteins involved in excitation-contraction (E-C) coupling in skeletal muscle, where it functions as a Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. RyR consists of a single polypeptide of approximately 560 kDa normally arranged in a homotetrameric structure, which contains a carboxyl (C)-terminal transmembrane domain and a large amino (N)-terminal cytoplasmic domain. To test whether the carboxyl-terminal portion of RyR is sufficient to form a Ca2+ release channel, we expressed the full-length (RyR-wt) and C-terminal (RyR-C, approximately 130 kDa) RyR proteins in a Chinese hamster ovary (CHO) cell line, and measured their Ca2+ release channel functions in planar lipid bilayer membranes. The single-channel properties of RyR-wt were found to be similar to those of RyR from skeletal muscle SR. The RyR-C protein forms a cation-selective channel that shares some of the channel properties with RyR-wt, including activation by cytoplasmic Ca2+ and regulation by ryanodine. Unlike RyR-wt, which exhibits a linear current-voltage relationship and inactivates at millimolar Ca2+, the channels formed by RyR-C display significant inward rectification and fail to close at high cytoplasmic Ca2+. Our results show that the C-terminal portion of RyR contains structures sufficient to form a functional Ca2+ release channel...

Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni.

Bolla, J M; Dé, E; Dorez, A; Pagès, J M
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 15/12/2000 EN
Relevância na Pesquisa
17.125742%
A novel pore-forming protein identified in Campylobacter was purified by ion-exchange chromatography and named Omp50 according to both its molecular mass and its outer membrane localization. We observed a pore-forming ability of Omp50 after re-incorporation into artificial membranes. The protein induced cation-selective channels with major conductance values of 50-60 pS in 1 M NaCl. N-terminal sequencing allowed us to identify the predicted coding sequence Cj1170c from the Campylobacter jejuni genome database as the corresponding gene in the NCTC 11168 genome sequence. The gene, designated omp50, consists of a 1425 bp open reading frame encoding a deduced 453-amino acid protein with a calculated pI of 5.81 and a molecular mass of 51169.2 Da. The protein possessed a 20-amino acid leader sequence. No significant similarity was found between Omp50 and porin protein sequences already determined. Moreover, the protein showed only weak sequence identity with the major outer-membrane protein (MOMP) of Campylobacter, correlating with the absence of antigenic cross-reactivity between these two proteins. Omp50 is expressed in C. jejuni and Campylobacter lari but not in Campylobacter coli. The gene, however, was detected in all three species by PCR. According to its conformation and functional properties...

Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban.

Ludlam, C F; Arkin, I T; Liu, X M; Rothman, M S; Rath, P; Aimoto, S; Smith, S O; Engelman, D M; Rothschild, K J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /04/1996 EN
Relevância na Pesquisa
17.125742%
Phospholamban is a 52-amino acid residue membrane protein that regulates Ca(2+)-ATPase activity in the sarcoplasmic reticulum of cardiac muscle cells. The hydrophobic C-terminal 28 amino acid fragment of phospholamban (hPLB) anchors the protein in the membrane and may form part of a Ca(2+)-selective ion channel. We have used polarized attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy along with site-directed isotope labeling to probe the local structure of hPLB. The frequency and dichroism of the amide I and II bands appearing at 1658 cm-1 and 1544 cm-1, respectively, show that dehydrated and hydrated hPLB reconstituted into dimyristoylphosphatidycholine bilayer membranes is predominantly alpha-helical and has a net transmembrane orientation. Specific local secondary structure of hPLB was probed by incorporating 13C at two positions in the protein backbone. A small band seen near 1614 cm-1 is assigned to the amide I mode of the 13C-labeled amide carbonyl group(s). The frequency and dichroism of this band indicate that residues 39 and 46 are alpha-helical, with an axial orientation that is approximately 30 degrees relative to the membrane normal. Upon exposure to 2H2O (D2O), 30% of the peptide amide groups in hPLB undergo a slow deuterium/hydrogen exchange. The remainder of the protein...

Theoretical Study of the Structure and Dynamic Fluctuations of Dioxolane-Linked Gramicidin Channels

Yu, Ching-Hsing; Cukierman, Samuel; Pomès, Régis
Fonte: Biophysical Society Publicador: Biophysical Society
Tipo: Artigo de Revista Científica
Publicado em /02/2003 EN
Relevância na Pesquisa
17.125742%
Gramicidin is a hydrophobic peptide that assembles as a head-to-head dimer in lipid membranes to form water-filled channels selective to small monovalent cations. Two diastereoisomeric forms, respectively SS and RR, of chemically modified channels in which a dioxolane ring links the formylated N-termini of two gramicidin monomers, were shown to form ion channels. To investigate the structural basis underlying experimentally measured differences in proton conductance in the RR and SS channels, we construct atomic-resolution models of dioxolane-linked gramicidin dimers by analogy with the native dimer. A parametric description of the linker compatible with the CHARMM force field used for the peptide is derived by fitting geometry, vibrational frequencies, and energy to the results of ab initio calculations. The linker region of the modified gramicidin dimers is subjected to an extensive conformational search using high-temperature simulated annealing, and free-energy surfaces underlying the structural fluctuations of the channel backbone at 298K are computed from molecular dynamics simulations. The overall secondary structure of the β-helical gramicidin pore is retained in both linked channels. The SS channel is found in a single conformation resembling that of the native dimer...

A Stored Charge Model for the Sodium Channel

Hoyt, Rosalie C.; Strieb, Jay D.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /11/1971 EN
Relevância na Pesquisa
17.125742%
A new model is proposed to account for the apparent conductance changes of the sodium, or early, channel in nerve fiber membranes. In this model it is assumed that the channels are gated at the interior side of the membrane and are resistively limited at the exterior side by sodium selective barriers of high resistance to ion flow. Under resting conditions the closed channels accumulate a store of sodium ions, dependent on the exterior sodium concentration. With the application of a depolarizing clamp the interior gates open allowing the stored ions to discharge into the interior low sodium concentration solution. In this model the initial rise in the early current results from the opening of more and more gates in response to the depolarizing clamp. The subsequent fall in the early current results from the “capacitative” discharge of the opened channels, limited by the high resistive barrier at the exterior end. Upon repolarization, the gates reclose and sodium ions reaccumulate in the channels from the high concentration external solution, but at a slow rate determined by the resistive barrier. Preliminary tests of this model, using a number of simplifying assumptions, show that it has the ability to account, at least semiquantitatively...

Novel Subcellular Distribution Pattern of A-Type K+ Channels on Neuronal Surface

Kollo, Mihaly; Holderith, Noémi B.; Nusser, Zoltan
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 08/03/2006 EN
Relevância na Pesquisa
17.125742%
Potassium channels comprise the most diverse family of ion channels. In nerve cells, their critical roles in synaptic integration and output generation have been demonstrated. Here, we provide evidence for a distribution that predicts a novel role of K+ channels in the CNS. Our experiments revealed a highly selective clustering of the Kv4.3 A-type K+ channel subunits at specialized junctions between climbing fibers and cerebellar GABAergic interneurons. High-resolution ultrastructural and immunohistochemical experiments demonstrated that these junctions are distinct from known chemical and electrical (gap junctions) synapses and also from puncta adherentia. Each cerebellar interneuron contains many such K+ channel-rich specializations, which seem to be distributed throughout the somatodendritic surface. We also show that such K+ channel-rich specializations are not only present in the cerebellum but are widespread in the rat CNS. For example, mitral cells of the main olfactory bulb establish Kv4.2subunit-positive specializations with each other. At these specializations, both apposing membranes have a high density of K+ channels, indicating bidirectional signaling. Similar specializations with pronounced coclustering of the Kv4.2 and 4.3 subunits were observed between nerve cells in the medial nucleus of the habenula. Based on our results and on the known properties of A-type K+ channels...

Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes

Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 01/08/1986 EN
Relevância na Pesquisa
17.125742%
Acetylcholine receptors (AChRs) are packed in the postsynaptic membrane at neuromuscular junctions at a density of approximately 20,000/micron 2, whereas the density a few micrometers away is less than 20/micron 2. To understand how this remarkable distribution comes about during nerve- muscle synapse formation, we have attempted to isolate factors from neural tissue that can promote the accumulation of AChRs and/or alter their distribution. In this paper we report the purification of a polypeptide from chick brains that can increase the rate of insertion of AChR into membranes of cultured chick myotubes at a concentration of less than 0.5 ng/ml. Based on SDS PAGE and the action of neuraminidase, the acetylcholine receptor-inducing activity (ARIA) appears to be a 42,000-D glycoprotein. ARIA was extracted in a trifluoroacetic acid- containing cocktail and purified to homogeneity by reverse-phase, ion exchange, and size exclusion high pressure liquid chromatography. Dose response curves indicate that the activity has been purified 60,000- fold compared with the starting acid extract and approximately 1,500,000-fold compared with a saline extract prepared from the same batch of brains. Although the ARIA was purified on the basis of its ability to increase receptor incorporation...

Effects of voltage perturbation of the lingual receptive field on chorda tympani responses to Na+ and K+ salts in the rat: implications for gustatory transduction

Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 01/11/1994 EN
Relevância na Pesquisa
17.125742%
Taste sensory responses from the chorda tympani nerve of the rat were recorded with the lingual receptive field under current or voltage clamp. Consistent with previous results (Ye, Q., G. L. Heck, and J. A. DeSimone. 1993. Journal of Neurophysiology. 70:167-178), responses to NaCl were highly sensitive to lingual voltage clamp condition. This can be attributed to changes in the electrochemical driving force for Na+ ions through apical membrane transducer channels in taste cells. In contrast, responses to KCl over the concentration range 50-500 mM were insensitive to the voltage clamp condition of the receptive field. These results indicate the absence of K+ conductances comparable to those for Na+ in the apical membranes of taste cells. This was supported by the strong anion dependence of K salt responses. At zero current clamp, the potassium gluconate (KGlu) threshold was > 250 mM, and onset kinetics were slow (12 s to reach half-maximal response). Faster onset kinetics and larger responses to KGlu occurred at negative voltage clamp (-50 mV). This indicates that when K+ ion is transported as a current, and thereby uncoupled from gluconate mobility, its rate of delivery to the K+ taste transducer increases. Analysis of conductances shows that the paracellular pathway in the lingual epithelium is 28 times more permeable to KCl than to KGlu. Responses to KGlu under negative voltage clamp were not affected by agents that are K+ channel blockers in other systems. The results indicate that K salt taste transduction is under paracellular diffusion control...

Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis

Xu, Haoxing; Cui, Ningren; Yang, Zhenjiang; Qu, Zhiqiang; Jiang, Chun
Fonte: Blackwell Science Inc Publicador: Blackwell Science Inc
Tipo: Artigo de Revista Científica
Publicado em 01/05/2000 EN
Relevância na Pesquisa
17.125742%
CO2 chemoreception may be mediated by the modulation of certain ion channels in neurons. Kir4.1 and Kir5.1, two members of the inward rectifier K+ channel family, are expressed in several brain regions including the brainstem. To test the hypothesis that Kir4.1 and Kir5.1 are modulated by CO2 and pH, we carried out experiments by expressing Kir4.1 and coexpressing Kir4.1 with Kir5.1 (Kir4.1-Kir5.1) in Xenopus oocytes. K+ currents were then studied using two-electrode voltage clamp and excised patches.Exposure of the oocytes to CO2 (5, 10 and 15 %) produced a concentration-dependent inhibition of the whole-cell K+ currents. This inhibition was fast and reversible. Exposure to 15 % CO2 suppressed Kir4.1 currents by ∼20 % and Kir4.1-Kir5.1 currents by ∼60 %.The effect of CO2 was likely to be mediated by intracellular acidification, because selective intracellular, but not extracellular, acidification to the measured hypercapnic pH levels lowered the currents as effectively as hypercapnia.In excised inside-out patches, exposure of the cytosolic side of membranes to solutions with various pH levels brought about a dose-dependent inhibition of the macroscopic K+ currents. The pK value (-log of dissociation constant) for the inhibition was 6.03 in the Kir4.1 channels...

Loss of AKAP150 perturbs distinct neuronal processes in mice

Tunquist, Brian J.; Hoshi, Naoto; Guire, Eric S.; Zhang, Fang; Mullendorff, Karin; Langeberg, Lorene K.; Raber, Jacob; Scott, John D.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
17.125742%
A-Kinase Anchoring Proteins (AKAPs) ensure the fidelity of second messenger signaling events by directing protein kinases and phosphatases toward their preferred substrates. AKAP150 brings protein kinase A (PKA), the calcium/calmodulin dependent phosphatase PP2B and protein kinase C (PKC) to postsynaptic membranes where they facilitate the phosphorylation dependent modulation of certain ion channels. Immunofluorescence and electrophysiological recordings were combined with behavioral analyses to assess whether removal of AKAP150 by gene targeting in mice changes the signaling environment to affect excitatory and inhibitory neuronal processes. Mislocalization of PKA in AKAP150 null hippocampal neurons alters the bidirectional modulation of postsynaptic AMPA receptors with concomitant changes in synaptic transmission and memory retention. AKAP150 null mice also exhibit deficits in motor coordination and strength that are consistent with a role for the anchoring protein in the cerebellum. Loss of AKAP150 in sympathetic cervical ganglion (SCG) neurons reduces muscarinic suppression of inhibitory M currents and provides these animals with a measure of resistance to seizures induced by the non-selective muscarinic agonist pilocarpine. These studies argue that distinct AKAP150-enzyme complexes regulate context-dependent neuronal signaling events in vivo.

Identification of Undecaprenyl Phosphate-β-D-Galactosamine in Francisella novicida and Its Function in Lipid A Modification

Wang, Xiaoyuan; Ribeiro, Anthony A.; Guan, Ziqiang; Raetz, Christian R. H.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 17/02/2009 EN
Relevância na Pesquisa
17.125742%
Francisella tularensis is a highly infectious pathogen that causes tularemia. Francisella lipid A contains an unusual galactosamine (GalN) unit, attached to its 1-phosphate moiety. Two genes, flmF2 and flmK, are required for the addition of GalN to Francisella lipid A, but the relevant enzymes and the GalN donor substrate have not been characterized. We now report the purification and identification of a novel minor lipid from Francisella novicida that functions as the GalN donor. Based on electrospray ionization mass spectrometry (ESI/MS) and NMR spectroscopy, we propose that this compound is undecaprenyl phosphate-β-D-GalN. Approximately 0.5 mg of pure lipid was obtained from 10 g of F. novicida by chloroform/methanol extraction, followed by DEAE-cellulose chromatography, mild alkaline hydrolysis, and thin layer chromatography. ESI/MS in the negative mode revealed a molecular ion [M-H]- at m/z 1006.699, consistent with undecaprenyl phosphate-GalN. 31P-NMR spectroscopy showed a single phosphorus atom in phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the sugar. 1H-NMR studies showed the presence of a polyisoprene chain and a sugar consistent with a β-D-GalN unit. Heteronuclear multiple quantum coherence (HMQC) analysis confirmed that nitrogen is attached to C-2 of the sugar. Purified undecaprenyl phosphate-β-D-GalN supports the in vitro modification of lipid IVA by membranes of E. coli cells expressing FlmK...

Calcium signaling in pathogenic and beneficial plant microbe interactions: What can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana

Vadassery, Jyothilakshmi; Oelmüller, Ralf
Fonte: Landes Bioscience Publicador: Landes Bioscience
Tipo: Artigo de Revista Científica
Publicado em /11/2009 EN
Relevância na Pesquisa
17.125742%
Elevation of intracellular calcium levels in a plant cell is an early signaling event in many mutualistic and pathogenic plant/microbe interactions. In pathogenic plant/fungus interactions, receptor-mediated cytoplasmic calcium elevations induce defense genes via the activation of ion fluxes at the plasma membrane, an oxidative burst and MAPK activation. Mycorrhizal and beneficial endophytic plant/fungus interactions result in a better plant performance through sequencial cytoplasmic and nuclear calcium elevations. The specificity of the calcium responses depends on the calcium signature, its amplitude, duration, frequency and location, a selective activation of calcium channels in the diverse cellular membranes and the stimulation of calcium-dependent signaling components. Arabidopsis contains more than 100 genes for calcium-binding proteins and channels and the response to pathogens and beneficial fungi relies on a highly specific activation of individual members of these protein families. Genetic tools are required to understand this complex response patterns and the cross talks between the individual calcium-dependent signaling pathways. The beneficial interaction of Arabidopsis with the growth-promoting endophyte Piriformospora indica provides a nice model system to unravel signaling events leading to mutualistic or pathogenic plant/fungus interactions.

Neurotoxic Mutants of the Prion Protein Induce Spontaneous Ionic Currents in Cultured Cells*

Solomon, Isaac H.; Huettner, James E.; Harris, David A.
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
17.125742%
The mechanisms by which prions kill neurons and the role of the cellular prion protein in this process are enigmatic. Insight into these questions is provided by the neurodegenerative phenotypes of transgenic mice expressing prion protein (PrP) molecules with deletions of conserved amino acids in the central region. We report here that expression in transfected cells of the most toxic of these PrP deletion mutants (Δ105–125) induces large, spontaneous ionic currents that can be detected by patch-clamping techniques. These currents are produced by relatively non-selective, cation-permeable channels or pores in the cell membrane and can be silenced by overexpression of wild-type PrP, as well as by treatment with a sulfated glycosaminoglycan. Similar currents are induced by PrP molecules carrying several different point mutations in the central region that cause familial prion diseases in humans. The ionic currents described here are distinct from those produced in artificial lipid membranes by synthetic peptides derived from the PrP sequence because they are induced by membrane-anchored forms of PrP that are synthesized by cells and that are found in vivo. Our results indicate that the neurotoxicity of some mutant forms of PrP is attributable to enhanced ion channel activity and that wild-type PrP possesses a channel-silencing activity. Drugs that block PrP-associated channels or pores may therefore represent novel therapeutic agents for treatment of patients with prion diseases.