Página 1 dos resultados de 312 itens digitais encontrados em 0.016 segundos

Atividade celulolítica de fungos isolados de bagaço de cana-de-açúcar e serapilheira em comparação com cepas de Trichoderma reesei; Cellulase activity of fungal isolates from sugar cane bagasse and decaying plant material as compared to Trichoderma reesei strains

Basso, Thalita Peixoto
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 13/12/2010 PT
Relevância na Pesquisa
36.73%
O presente trabalho teve por objetivo avaliar a atividade celulolítica de fungos isolados de bagaço de cana-de-açúcar e serapilheira, atuantes sobre bagaço de cana-de-açúcar e farelo de arroz como substratos. Dez isolados fúngicos de amostras de bagaço de cana-de-açúcar e material vegetal em decomposição foram avaliados quanto à atividade celulolítica, tendo como referências os fungos Trichoderma reesei QM9414 e T. reesei RUTC30. A atividade celulolítica foi estimada pela capacidade hidrolítica do extrato enzimático dos fungos crescidos em bagaço de cana-deaçúcar, com e sem pré-tratamento térmico e com diferentes proporções de farelo de arroz. A atividade celulolítica foi estimada tanto em papel de filtro, para celulase total, como a carboximetilcelulose sódica, para endoglucanase. Os isolados identificados por análise molecular através da região 26S rDNA foram: Aspergillus giganteus (S1), Aspergillus fumigatus (S2 e F4), Trichoderma viride/Trichoderma hamatum (S3 e S6), Trichoderma koningiopsis (TPB), Paecilomyces variotti (F1), Moniliophthora perniciosa (F2), Acremonium cellulyticus/Penicillium verruculosum (G3) e Trichoderma sp RA305 (MAD). O Trichoderma reesei QM9414 apresentou a maior atividade tanto para celulase total como para endoglucanase. O isolado F1 não diferiu estatisticamente para atividade de endoglucanase em relação à cepa QM9414 em substrato contento somente bagaço. O isolado MAD não diferiu estatisticamente para atividade de celulase total e endoglucanse em relação à cepa QM9414 em substrato contendo 10% de farelo de arroz. Os isolados TPB e S2 apresentaram as maiores atividades para endoglucanase em bagaço de cana-de-açúcar tratado. Tais resultados mostram que a biodiversidade em nichos...

Isolamento e seleção de fungos celulolíticos para hidrólise enzimática do bagaço de cana-de-açucar; Isolation and screening of cellulolytic fungi for enzymatic hydrolysis of sugarcane bagasse

Bortolazzo, Nara Gustinelli
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 13/05/2011 PT
Relevância na Pesquisa
36.68%
Atualmente os processos biotecnológicos têm conquistado um lugar de destaque no desenvolvimento tecnológico mundial, tendo as enzimas como as celulases, grande importância econômica e diferentes aplicações industriais. O objetivo deste trabalho foi à obtenção de fungos isolados e selecionados do ambiente agroindustrial, com a capacidade de hidrolisar a fração celulósica do bagaço de cana-de-açúcar. Um total de 46 isolados foram obtidos de bagaço de cana coletados em 3 destilarias. Quinze apresentaram a formação de halo pela coloração com vermelho Congo, os quais foram avaliados quanto a atividade celulolítica (F1 a F15), tendo como referência o fungo Trichoderma ressei 9414. Os isolados foram cultivados em bagaço de canade- açúcar 1% e conduziu-se a determinação da atividade de endoglucanase (CMCase) empregando-se carboximetilcelulose (CMC) como substrato, e da atividade da celulase total (FPase) empregando papel de filtro como substrato. Após 21 dias de cultivo em bagaço de canade- açúcar nenhum dos isolados apresentou atividade da celulase total maior que T. ressei QM9414. Destes isolados, F9 apresentou maior valor para a atividade da celulase total após 7 dias de cultivo. Com relação a atividade da endoglucanase...

Influence of condensed tannins from Brazilian semi-arid legumes on ruminal degradability, microbial colonization and ruminal enzymatic activity in Saanen goats

Guimaraes-Beelen, P. M.; Berchielli, T. T.; Beelen, R.; Medeiros, A. N.
Fonte: Elsevier B.V. Publicador: Elsevier B.V.
Tipo: Artigo de Revista Científica Formato: 35-44
ENG
Relevância na Pesquisa
56.45%
The present study aimed at determining the influence of condensed tannins present in the Brazilian legume species Mimosa hostilis, Mimosa caesalpinifolia and Bauhinia cheilantha on ruminal degradability, microbial colonization and enzymatic activity. Polyethylene glycol (PEG) was used to reduce the astringency and concentration of soluble condensed tannins. Four ruminally-cannulated Saanen goats (60 +/- 8 kg BW) were fed, in two experimental periods, with a hay diet based on the studied legumes treated or non-treated with PEG. Voluntary intake, microbial colonization, DM, CP, NDF, and ruminal degradability of PEG treated and non-treated forage leaves, as well as pH, ammonia and 1,4 P-endoglucanase activity of the rumen content were evaluated. Astringency and soluble tannin concentration of the studied legumes were reduced by approximately 70% and 50%, respectively, with PEG treatment. Average DM intake was higher for the treated diet (16.76 g DM/kg BW/day against 13.06 g DM/kg BW/day). Percentile values for degradation parameters and for potential and effective degradabilities of DM, CP and NDF were also affected by the tannins, but at different intensities. Electron microscopic observations of ruminally-incubated legume leaves showed a more effective microbial colonization of PEG-treated leaves for all legume species. A decrease in pH and an increase in ammonia concentration and in endoglucanase activity in the ruminal content was also observed for PEG-treated diets at all sampling periods. Condensed tannins of the studied legume species have influenced the adhesion conditions...

Growth and endoglucanase activity of Acetivibrio cellulolyticus grown in three different cellulosic substrates

Sanchez,Cássia Regina; Peres,Clarita Schvartz; Barbosa,Heloiza Ramos
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/12/1999 EN
Relevância na Pesquisa
56.4%
The growth kinetics of Acetivibrio cellulolyticus grown in medium containing different carbon sources (cellobiose, amorphous or crystalline cellulose) was investigated. The specific growth rate was higher in cellobiose fed cultures than in the presence of the other two substrates. Endoglucanase production was greater in cultures grown on amorphous cellulose; enzyme activity increased during the stationary phase in cultures grown on crystalline cellulose.

Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

Dobrev,Georgi Todorov; Zhekova,Boriana Yordanova
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/03/2012 EN
Relevância na Pesquisa
36.51%
An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 3.5 and 65ºC respectively. Endoglucanase was stable at 40ºC, pH 3.0 for 210 min. The substrate specificity of the enzyme was determined with carboxymethyl cellulose, filter paper, and different glycosides. Endoglucanase displayed maximum activity in the case of carboxymethyl cellulose, with a Km value of 21.01 mg/mL. The substrate specificity and the pattern of substrate degradation suggested that the enzyme is an endoglucanase. Endoglucanase showed a synergism with endoxylanase in corn cobs hydrolysis.

Characteristics of a β-1,4-D endoglucanase from Trichoderma virens wholly applied in a palm-fruit husk-based diet for poultry layers

Odeniyi,Olubusola A.; Onilude,Anthony A.; Ayodele,Maria A.
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/12/2012 EN
Relevância na Pesquisa
46.58%
The characteristics of an endoglucanase produced by a Trichoderma virens strain T9 newly isolated from a palm-fruit husk dump site, its physiological characteristics and enzyme production were studied. Whole cells of the depolymerizing-enzyme producing T. virens were applied to palm-fruit husk and bird performance characteristics when employed as poultry diet additive were considered. Endoglucanase activity in submerged fermentation was 1.6 nkat. Optimum activity was recorded at pH 6.0 and 55ºC. The enzyme retained 50% residual glucanase activity at 70ºC for 10 minutes. 1.0% Tween-80 and SDS yielded endoglucanase activity 2.15 times higher than the control. Activity wasboosted by 20mM Ca2+ (115.0%); 10mM K+ (106.5%); and was totally inhibited by 1mM Hg2+. The addition of T. virens -fermented palm-fruit husk with other layer feed components on the bird characteristics showed that change in bird weight between the control and test birds were not significantly different (p>0.05) but differed in terms of daily feed ingested (p<0.05). The feed to weight-gain ratio was best with the unmodified palm-fruit husk based diet (8.59). There was no significant difference in the egg weights from modified palm-fruit husk based diet and control (p>0.05). The shell thickness (0.64mm) and yolk content (23.61%) were highest in the microbially-modified husk diet. The alternative to maize based diets proffered by the application of T. virens -modified palm-fruit husk in poultry nutrition in terms of bird weight and feed to weight-gain ratio affords the poultry farmer an economic advantage and allows for a greater utilization of the maize in human diets.

Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J

El-Naggar,Noura El-Ahmady; Abdelwahed,Nayera A.M.; Saber,Wesam I.A.; Mohamed,Asem A.
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/06/2014 EN
Relevância na Pesquisa
46.49%
The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 ºC after 6 days...

Effects of Condensed Tannins on Endoglucanase Activity and Filter Paper Digestion by Fibrobacter succinogenes S85 †

Bae, Hee Dong; McAllister, Tim A.; Yanke, Jay; Cheng, K.-J.; Muir, A. D.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /07/1993 EN
Relevância na Pesquisa
46.58%
The effect of condensed tannins from birdsfoot trefoil (Lotus corniculatus L.) on the cellulolytic rumen bacterium Fibrobacter succinogenes S85 was examined. Condensed tannins inhibited endoglucanase activity in the extracellular culture fluid, at concentrations as low as 25 μg ml-1. In contrast, cell-associated endoglucanase activity increased in concentrations of condensed tannins between 100 and 300 μg ml-1. Inhibition of endoglucanase activity in both the extracellular and the cell-associated fractions was virtually complete at 400 μg of condensed tannins ml-1. Despite the sharp decline in extracellular endoglucanase activity with increasing concentrations of condensed tannins, filter paper digestion declined only moderately between 0 and 200 μg of condensed tannins ml-1. However, at 300 μg ml-1, filter paper digestion was dramatically reduced and at 400 μg ml-1, almost no filter paper was digested. F. succinogenes S85 was seen to form digestive grooves on the surface of cellulose, and at 200 μg ml-1, digestive pits were formed which penetrated into the interior of cellulose fibers. Cells grown with condensed tannins (100 to 300 μg ml-1) possessed large amounts of surface material, and although this material may have been capsular carbohydrate...

Molecular cloning, expression, and characterization of endoglucanase genes from Fibrobacter succinogenes AR1.

Cavicchioli, R; Watson, K
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /02/1991 EN
Relevância na Pesquisa
36.53%
A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46...

Production and Characteristics of Avicel-Disintegrating Endoglucanase from a Protease-Negative Humicola grisea var. thermoidea Mutant

Hayashida, Shinsaku; Mo, Kaiguo
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /05/1986 EN
Relevância na Pesquisa
36.65%
Mutational experiments were performed to decrease the protease productivity of Humicola grisea var. thermoidea YH-78 using UV light and N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, no. 140, exhibited higher endoglucanase activity than the parent strain in mold bran culture at 50°C for 4 days. The culture extract rapidly disintegrated filter paper but produced a small amount of reducing sugar. About 30% of total endoglucanase activity in the extract was adsorbed onto Avicel. The electrophoretically homogeneous preparation of Avicel-adsorbable endoglucanase (molecular weight, 128,000) showed intensive filter-paper-disintegrating activity but did not release reducing sugar. The preparation also exhibited a highly synergistic effect with the cellulase preparation from Trichoderma reesei in the hydrolysis of microcrystalline cellulose. This endoglucanase was observed via scanning electron microscopy to disintegrate Avicel fibrils layer by layer from the surface, yielding thin sections with exposed chain ends. A mutant, no. 191, producing higher protease activity and an Avicel-unadsorbable, Avicel-nondisintegrating endoglucanase was isolated. The purified enzyme (molecular weight, 63,000) showed no disintegrating activity on filter paper and Avicel and a less synergistic effect with the T. reesei cellulase in hydrolyzing microcrystalline cellulose than did the former enzyme. Endoglucanase was therefore divided into two types...

Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor, β-1,3-Endoglucanase, in Soybean 1

Takeuchi, Youji; Yoshikawa, Masaaki; Takeba, Gou; Tanaka, Kunisuke; Shibata, Daisuke; Horino, Osamu
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /06/1990 EN
Relevância na Pesquisa
36.54%
Soybean (Glycine max) β-1,3-endoglucanase (EC 3.2. 1.39) is involved in one of the earliest plant-pathogen interactions that may lead to active disease resistance by releasing elicitor-active carbohydrates from the cell walls of fungal pathogens. Ethylene induced β-1,3-endoglucanase activity to 2- to 3-fold higher levels in cotyledons of soybean seedlings. A specific polyclonal antiserum raised against purified soybean β-1,3-endoglucanase was used to immunoprecipitate in vitro translation products, demonstrating that ethylene induction increased translatable β-1,3-endoglucanase mRNA. Several cDNA clones for the endoglucanase gene were obtained by antibody screening of a λ-gt11 expression library prepared from soybean cotyledons. Hybrid-select translation experiments indicated that the cloned cDNA encoded a 36-kilodalton precursor protein product that was specifically immunoprecipitated with β-1,3-endoglucanase antiserum. Escherichia coli cells expressing the cloned cDNA also synthesized an immunologically positive protein. Nucleotide sequence of three independent clones revealed a single uninterrupted open reading frame of 1041 nucleotides, corresponding to a polypeptide of 347 residue long. The primary amino acid sequence of β-1...

Purification and characterization of an endoglucanase (1,4-beta-D-glucan glucanohydrolase) from Clostridium thermocellum.

Ng, T K; Zeikus, J G
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/11/1981 EN
Relevância na Pesquisa
36.62%
An endoglucanase (1,4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) was purified from Clostridium thermocellum by procedures that included centrifugation, ultrafiltration, selective precipitation, ion-exchange Sephadex chromatography and preparative gel electrophoresis. The 22-fold-purified enzyme behaved as a homogeneous protein under non-denaturing conditions. The enzyme represented a significant component (greater than 25%) of total extracellular endoglucanase activity, but was purified in low yield by the procedures employed. The native molecular weight of the endoglucanase was determined by ultracentrifugational analysis, amino acid composition and polyacrylamide-gel electrophoresis, and varied between 83000 and 94000. The enzyme contained 11.2% carbohydrate and was isoelectric at pH 6.72. The pH and temperature optima of the endoglucanase were 5.2 and 62 degrees C respectively. The enzyme lacked cysteine and was low in sulphur-containing amino acids. The purified endoglucanase displayed: high activity towards carboxymethylcellulose, celloheptaose, cellohexaose and cellopentaose; low activity towards Avicel microcrystalline cellulose and cellotetraose; no detectable activity towards cellotriose or cellobiose; increased activity towards cello-oligosaccharides with increasing degree of polymerization. The internal glycosidic bonds of cello-oligosaccharides were cleaved by the enzyme in preference to external linkages. The apparent Michaelis constant ([S]0.5V) and Vmax. for cellopentaose and cellohexaose hydrolysis were 2.30 mM and 39.3 mumol/min per mg of protein...

Legionella pneumophila Secretes an Endoglucanase That Belongs to the Family-5 of Glycosyl Hydrolases and Is Dependent upon Type II Secretion

Pearce, Meghan M.; Cianciotto, Nicholas P.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
36.67%
Examination of cell-free culture supernatants revealed that Legionella pneumophila strains secrete an endoglucanase activity. L. pneumophila lspF mutants were deficient for this activity, indicating that the endoglucanase is secreted by the bacterium’s type II protein secretion system. Inactivation of celA, encoding a member of the family-5 of glycosyl hydrolases, abolished the endoglucanase activity in L. pneumophila culture supernatants. The cloned celA gene conferred activity upon recombinant Escherichia coli. Thus, CelA is the major secreted endoglucanase of L. pneumophila. Mutants inactivated for celA grew normally in protozoa and macrophage, indicating that CelA is not required for the intracellular phase of L. pneumophila. The CelA endoglucanase is one of at least 25 proteins secreted by the type II system of L. pneumophila and the seventeenth type of enzyme effector associated with this pathway. Only a subset of the other Legionella species tested expressed secreted endoglucanase activity, suggesting that the type II secretion output differs among the different legionellae. Overall, this study represents the first documentation of an endoglucanase (EC 3.2.1.4) being produced by a strain of Legionella.

Streptomyces misionensis PESB-25 Produces a Thermoacidophilic Endoglucanase Using Sugarcane Bagasse and Corn Steep Liquor as the Sole Organic Substrates

Franco-Cirigliano, Marcella Novaes; Rezende, Raquel de Carvalho; Gravina-Oliveira, Mônica Pires; Pereira, Pedro Henrique Freitas; do Nascimento, Rodrigo Pires; Bon, Elba Pinto da Silva; Macrae, Andrew; Coelho, Rosalie Reed Rodrigues
Fonte: Hindawi Publishing Corporation Publicador: Hindawi Publishing Corporation
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
36.63%
Streptomyces misionensis strain PESB-25 was screened and selected for its ability to secrete cellulases. Cells were grown in a liquid medium containing sugarcane bagasse (SCB) as carbon source and corn steep liquor (CSL) as nitrogen source, whose concentrations were optimized using response surface methodology (RSM). A peak of endoglucanase accumulation (1.01 U·mL−1) was observed in a medium with SCB 1.0% (w/v) and CSL 1.2% (w/v) within three days of cultivation. S. misionensis PESB-25 endoglucanase activity was thermoacidophilic with optimum pH and temperature range of 3.0 to 3.6 and 62° to 70°C, respectively. In these conditions, values of 1.54 U mL−1 of endoglucanase activity were observed. Moreover, Mn2+ was demonstrated to have a hyperactivating effect on the enzyme. In the presence of MnSO4 (8 mM), the enzyme activity increased threefold, up to 4.34 U·mL−1. Mn2+ also improved endoglucanase stability as the catalyst retained almost full activity upon incubation at 50°C for 4 h, while in the absence of Mn2+, enzyme activity decreased by 50% in this same period. Three protein bands with endoglucanase activity and apparent molecular masses of 12, 48.5 and 119.5 kDa were detected by zymogram.

Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation

Chellapandi, P.; Jani, Himanshu M.
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
36.53%
Cellulase is a complex enzyme system, commercially produced by filamentous fungi under solid-state and submerged cultivation. It has wide applicability in textile, food and beverage industry for effective saccharification process. In this study, cellulolytic enzyme activity, particularly endoglucanase of 26 Streptomyces strains isolated from garden soil was examined, including two isolates selected on the basis of potential cellulolytic activity on Bennett’s agar medium. To enhance the endoglucanase formation in broth culture, different conditions including carbon and nitrogen sources, and growth conditions were tested. The maximum endoglucanase activity (11.25-11.90 U/mL) was achieved within 72-88 h in fermentation medium containing Tween-80, followed by phosphate sources. Both cellulolytic Streptomyces isolates gave almost equal quantity of enzyme in all trials. However the effect of medium ingredients on endoglucanase induction diverged with strains in some extent.

Characteristics of a β-1,4-D endoglucanase from Trichoderma virens wholly applied in a palm-fruit husk-based diet for poultry layers

Odeniyi, Olubusola A.; Onilude, Anthony A.; Ayodele, Maria A.
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
36.52%
The characteristics of an endoglucanase produced by a Trichoderma virens strain T9 newly isolated from a palm-fruit husk dump site, its physiological characteristics and enzyme production were studied. Whole cells of the depolymerizing-enzyme producing T. virens were applied to palm-fruit husk and bird performance characteristics when employed as poultry diet additive were considered. Endoglucanase activity in submerged fermentation was 1.6 nkat. Optimum activity was recorded at pH 6.0 and 55°C. The enzyme retained 50% residual glucanase activity at 70°C for 10 minutes. 1.0% Tween-80 and SDS yielded endoglucanase activity 2.15 times higher than the control. Activity was boosted by 20mM Ca2+ (115.0%); 10mM K+ (106.5%); and was totally inhibited by 1mM Hg2+. The addition of T. virens-fermented palm-fruit husk with other layer feed components on the bird characteristics showed that change in bird weight between the control and test birds were not significantly different (p>0.05) but differed in terms of daily feed ingested (p<0.05). The feed to weight-gain ratio was best with the unmodified palm-fruit husk based diet (8.59). There was no significant difference in the egg weights from modified palm-fruit husk based diet and control (p>0.05). The shell thickness (0.64mm) and yolk content (23.61%) were highest in the microbially-modified husk diet.

The jiaoyao1 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis[C][W]

Lei, Lei; Zhang, Tian; Strasser, Richard; Lee, Christopher M.; Gonneau, Martine; Mach, Lukas; Vernhettes, Samantha; Kim, Seong H.; J. Cosgrove, Daniel; Li, Shundai; Gu, Ying
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
46.22%
Characterizing the jiaoyao1 mutant represents a significant advance in our understanding of the role of Arabidopsis GH9A1/KORRIGAN1 in the proper organization of cellulose microfibrils and cortical microtubules. This study reveals that endoglucanase activity is important for cellulose biosynthesis.

Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker

Petkun, Svetlana; Rozman Grinberg, Inna; Lamed, Raphael; Jindou, Sadanari; Burstein, Tal; Yaniv, Oren; Shoham, Yuval; Shimon, Linda J.W.; Bayer, Edward A.; Frolow, Felix
Fonte: PeerJ Inc. Publicador: PeerJ Inc.
Tipo: Artigo de Revista Científica
Publicado em 15/09/2015 EN
Relevância na Pesquisa
36.53%
Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60–70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker...

Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

Byrt, C.; Cahyanegara, R.; Grof, C.
Fonte: Frontiers Research Foundation Publicador: Frontiers Research Foundation
Tipo: Artigo de Revista Científica
Publicado em //2012 EN
Relevância na Pesquisa
46.3%
A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbo-hydrate binding module (CBM) to a synthetic glycosyl hydrolase improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the CBM of the tomato (Solanum lycopersicum) SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using carboxymethylcellulose, MUC, and native crystalline cellulose assays. The presence of the CBM substantially improved the endoglucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum bicolor plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.; Caitlin S. Byrt, Ricky Cahyanegara and Christopher P.L. Grof; Extent: 8 p.

Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation

Chellapandi,P.; Jani,Himanshu M.
Fonte: Sociedade Brasileira de Microbiologia Publicador: Sociedade Brasileira de Microbiologia
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/03/2008 EN
Relevância na Pesquisa
46.57%
Cellulase is a complex enzyme system, commercially produced by filamentous fungi under solid-state and submerged cultivation. It has wide applicability in textile, food and beverage industry for effective saccharification process. In this study, cellulolytic enzyme activity, particularly endoglucanase of 26 Streptomyces strains isolated from garden soil was examined, including two isolates selected on the basis of potential cellulolytic activity on Bennett's agar medium. To enhance the endoglucanase formation in broth culture, different conditions including carbon and nitrogen sources, and growth conditions were tested. The maximum endoglucanase activity (11.25-11.90 U/mL) was achieved within 72-88 h in fermentation medium containing Tween-80, followed by phosphate sources. Both cellulolytic Streptomyces isolates gave almost equal quantity of enzyme in all trials. However the effect of medium ingredients on endoglucanase induction diverged with strains in some extent.