Página 1 dos resultados de 435 itens digitais encontrados em 0.010 segundos

Extração de características de imagens de faces humanas através de wavelets, PCA e IMPCA; Features extraction of human faces images through wavelets, PCA and IMPCA

Bianchi, Marcelo Franceschi de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 10/04/2006 PT
Relevância na Pesquisa
36.4%
Reconhecimento de padrões em imagens é uma área de grande interesse no mundo científico. Os chamados métodos de extração de características, possuem as habilidades de extrair características das imagens e também de reduzir a dimensionalidade dos dados gerando assim o chamado vetor de características. Considerando uma imagem de consulta, o foco de um sistema de reconhecimento de imagens de faces humanas é pesquisar em um banco de imagens, a imagem mais similar à imagem de consulta, de acordo com um critério dado. Este trabalho de pesquisa foi direcionado para a geração de vetores de características para um sistema de reconhecimento de imagens, considerando bancos de imagens de faces humanas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor n-dimensional contendo esses valores. Essa nova representação da imagem propicia vantagens ao processo de reconhecimento de imagens, pela redução da dimensionalidade dos dados. Uma abordagem alternativa para caracterizar imagens para um sistema de reconhecimento de imagens de faces humanas é a transformação do domínio. A principal vantagem de uma transformação é a sua efetiva caracterização das propriedades locais da imagem. As wavelets diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente...

Resolução numérica de EDPs utilizando ondaletas harmônicas; Numerical resolution of partial differential equations using harmonic wavelets

Peixoto, Pedro da Silva
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 16/07/2009 PT
Relevância na Pesquisa
36.43%
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas...

Modelo computacional baseado em técnicas wavelets para relacionar imagens digitais obtidas em diferentes escalas e resoluções; Computational model based on wavelet techniques for linking digital images obtained at different scales and resolutions

Minatel, Edson Roberto
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 03/10/2003 PT
Relevância na Pesquisa
36.38%
É apresentado o desenvolvimento de um modelo computacional que visa relacionar imagens digitais obtidas em diferentes escalas e resoluções com aplicação de Wavelets. Seu desenvolvimento encontra-se no contexto multidisciplinar e situa-se na intersecção das linhas de pesquisa de áreas da Física, da Matemática e da Computação. Desta forma, optou-se na implementação por uma abordagem computacional dos estudos, com aplicação em imagens digitais provenientes da reconstrução de dados de tomografia computadorizada de Raios-X. Resultados indicam que a implementação do modelo computacional desenvolvido tem sua funcionalidade comprovada, uma vez que os atributos vetoriais dos objetos considerados para análise (poros) foram mantidos estáveis em diferentes resoluções estudadas. O modelo foi implementado em linguagem de programação C++ com uso de orientação a objetos e organizado em classes. Adicionalmente, sua aplicação é viabilizada para diversas plataformas computacionais no que tange a sistemas operacionais e processadores. Do ponto de vista científico, o sistema resultante, além de ser uma ferramenta importante no estudo de meios porosos através de imagens de tomografia computadorizada por Raios-X, contribui com métodos inovadores que fazem uso de Wavelets e são aplicados na suavização de bordas por técnica sub-pixel...

O uso de ondaletas em modelos FANOVA; Wavelets FANOVA models

Airton Kist
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 20/10/2011 PT
Relevância na Pesquisa
46.31%
O problema de estimação funcional vem sendo estudado de formas variadas na literatura. Uma possibilidade bastante promissora se dá pela utilização de bases ortonormais de wavelets (ondaletas). Essa solução _e interessante por sua: frugalidade; otimalidade assintótica; e velocidade computacional. O objetivo principal do trabalho é estender os testes do modelo FANOVA de efeitos fixos, com erros i.i.d., baseados em ondaletas propostos em Abramovich et al. (2004), para modelos FANOVA de efeitos fixos com erros dependentes. Propomos um procedimento iterativo tipo Cocharane-Orcutt para estimar os parâmetros e a função. A função é estimada de forma não paramétrica via estimador ondaleta que limiariza termo a termo ou estimador linear núcleo ondaleta. Mostramos que, com erros i.i.d., a convergência individual do estimador núcleo ondaleta em pontos diádicos para uma variável aleatória com distribuição normal implica na convergência conjunta deste vetor para uma variável aleatória com distribuição normal multivariada. Além disso, mostramos a convergência em erro quadrático do estimador nos pontos diádicos. Sob uma restrição é possível mostrar que este estimador converge nos pontos diádicos para uma variável com distribuição normal mesmo quando os erros são correlacionados. O vetor das convergências individuais também converge para uma variável normal multivariada.; The functional estimation problem has been studied variously in the literature. A promising possibility is by use of orthonormal bases of wavelets. This solution is appealing because of its: frugality...

Modelos de representação de sinais musicais via transformada Wavelets; Representation models of musical signals by means of Wavelets transform

Andre Luiz Luvizotto
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 17/02/2007 PT
Relevância na Pesquisa
46.31%
Neste trabalho, as transformadas wavelet são utilizadas para recodificar e explorar sinais musicais. A idéia central do trabalho é mostrar que a reordenação adequada dos coeficientes provenientes das análises possibilita não somente recodificar de modo econômico o sinal como também transitar por sonoridades distintas. Ou seja, relaciona-se o posicionamento dos coeficientes wavelets, dentro de cada nível de multiresolução, com a geração de diferentes timbres. Uma vez definido o ordenamento dos coeficientes, duas formas de determinação de seus valores são exploradas. Na primeira forma, essas curvas ascendentes de coeficientes são aproximadas por uma função polinomial de grau p, levando a representações econômicas do sinal musical. Já no segundo modelo, os coeficientes de um sinal distinto (chamado sinal de base) são ordenados de forma ascendente. São então reordenados através das posições equivalentes do sinal original, também chamado de alvo, permitindo a sua reobtenção e também o trânsito entre as duas sonoridades envolvidas. Os resultados deste trabalho destacam a grande importância que o posicionamento dos coeficientes exercem na sonoridade com relação aos seus valores. Com os experimentos realizados...

El problema de tomografía local utilizando wavelets [recurso electrónico] / Wilmar Alberto Díaz Ossa, Harold Vacca González

Díaz Ossa, Wilmar A.; Vacca González, Harold
Fonte: Universidad EAFIT; Maestría en Matemáticas Aplicadas; Escuela de Ciencias y Humanidades. Departamento de Ciencias Básicas Publicador: Universidad EAFIT; Maestría en Matemáticas Aplicadas; Escuela de Ciencias y Humanidades. Departamento de Ciencias Básicas
Tipo: masterThesis; Tesis de Maestría; acceptedVersion
SPA
Relevância na Pesquisa
46.51%
1 CD-ROM : il.; La Tomografía local, llamada también tomografía interior, está dentro de los denominados problemas inversos. Este consiste en recuperar los valores de una imagen (función), en alguna región de interés, conociendo las proyecciones de rectas que atraviesan una región de estudio en la imagen (función). Debido a que la teoría de Wavelets es una alternativa que permite representar una señal en un espacio de tiempo-frecuencia, facilita el procesamiento local de señales no estacionarias. Lo anterior, es propicio en este proyecto, ya que, además de poder descomponer los datos de una imagen en coeficientes de altas y bajas frecuencias para su análisis; la transformada Wavelet de f puede ser recuperada localmente desde proyecciones locales. En este trabajo, se estudian y se aplican las transformadas que intervienen en el problema interior de tomografía local. Se describe y aplica el denominado Análisis Multirresolución y se utilizan bases de wavelets biortogonales para la localización y solución de dicho problema.; Introducción -- 1. Preliminares -- 1.1. Introducción -- 1.2. Transformada de Fourier -- 1.2.1. Serie de Fourier -- 1.3. Distribuciones y espacios de Sobolev -- 1.3.1. Espacios de Sobolev -- 1.4. Transformada de Hilbert -- 1.4.1. Propiedades de la transformada de Hilbert -- 1.4.2. La transformada de hilbert 2D -- 1.5. Transformada de rayos X y de Radon 1.5.1. Transformada continua de Radon -- 1.5.2. La Transformada continua de Radon en Rn . -- 1.5.3. Propiedades básicas de la Transformada continua de Radon -- 1.5.4. Operador Retroproyección 1.5.5. Fórmula de retroproyección filtrada -- 2. Introducción a las wavelets 25 -- 2.1. Introducción -- 2.2. Transformadas wavelets -- 2.2.1. Transformada wavelet continua -- 2.2.2. Transformada wavelet discreta -- 2.2.3. Transformada wavelet semicontinua -- 2.2.4. Transformada Rápida Wavelet -- 2.3. Análisis Multiresolución -- 2.3.1. Base Ortonormal de wavelets ψj...

Regularity of generalized Daubechies wavelets reproducing exponential polynomials

Dyn, N.; Kounchev, O.; Levin, D.; Render, H.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 30/10/2012
Relevância na Pesquisa
36.36%
We investigate non-stationary orthogonal wavelets based on a non-stationary interpolatory subdivision scheme reproducing a given set of exponentials. The construction is analogous to the construction of Daubechies wavelets using the subdivision scheme of Deslauriers-Dubuc. The main result is the smoothness of these Daubechies type wavelets.

Super-wavelets on local fields of positive characteristic

Shukla, Niraj K.; Maury, Saurabh C.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 23/11/2015
Relevância na Pesquisa
36.44%
The concept of super-wavelet was introduced by Balan, and Han and Larson over the field of real numbers which has many applications not only in engineering branches but also in different areas of mathematics. To develop this notion on local fields having positive characteristic we obtain characterizations of super-wavelets of finite length as well as Parseval frame multiwavelet sets of finite order in this setup. Using the group theoretical approach based on coset representatives, further we establish Shannon type multiwavelet in this perspective while providing examples of Parseval frame (multi)wavelets and (Parseval frame) super-wavelets. In addition, we obtain necessary conditions for decomposable and extendable Parseval frame wavelets associated to Parseval frame super-wavelets.; Comment: arXiv admin note: text overlap with arXiv:1511.05703

Wavelets Beyond Admissibility

Kisil, Vladimir V.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 24/11/2009
Relevância na Pesquisa
36.36%
The purpose of this paper is to articulate an observation that many interesting type of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. This extends an applicability of the popular wavelets construction to classic examples like the Hardy space. Keywords: Wavelets, coherent states, group representations, Hardy space, functional calculus, Berezin calculus, Radon transform, Moebius map, maximal function, affine group, special linear group, numerical range.; Comment: 7 pages, LaTeX2e

On the usefulness of Meyer wavelets for deconvolution and density estimation

Bigot, Jeremie
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Relevância na Pesquisa
36.4%
The aim of this paper is to show the usefulness of Meyer wavelets for the classical problem of density estimation and for density deconvolution from noisy observations. By using such wavelets, the computation of the empirical wavelet coefficients relies on the fast Fourier transform of the data and on the fact that Meyer wavelets are band-limited functions. This makes such estimators very simple to compute and this avoids the problem of evaluating wavelets at non-dyadic points which is the main drawback of classical wavelet-based density estimators. Our approach is based on term-by-term thresholding of the empirical wavelet coefficients with random thresholds depending on an estimation of the variance of each coefficient. Such estimators are shown to achieve the same performances of an oracle estimator up to a logarithmic term. These estimators also achieve near-minimax rates of convergence over a large class of Besov spaces. A simulation study is proposed to show the good finite sample performances of the estimator for both problems of direct density estimation and density deconvolution.

Non-MSF wavelets for the Hardy space H^2(\R)

Behera, Biswaranjan
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 17/07/2002
Relevância na Pesquisa
36.38%
We prove three results on wavelets for the Hardy space H^2(\R). All wavelets constructed so far for H^2(\R) are MSF wavelets. We construct a family of H^2-wavelets which are not MSF. An equivalence relation on H^2-wavelets is introduced and it is shown that the corresponding equivalence classes are non-empty. Finally, we construct a family of H^2-wavelets with Fourier transform discontinuous at the origin.; Comment: 11 pages

On Filter Banks and Wavelets Based on Chebyshev Polynomials

Cintra, R. J.; de Oliveira, H. M.; Soares, L. R.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 10/11/2014
Relevância na Pesquisa
36.38%
In this paper we introduce a new family of wavelets, named Chebyshev wavelets, which are derived from conventional first and second kind Chebyshev polynomials. Properties of Chebyshev filter banks are investigated, including orthogonality and perfect reconstruction conditions. Chebyshev wavelets have compact support, their filters possess good selectivity, but they are not orthogonal. The convergence of the cascade algorithm of Chebyshev wavelets is proved by using properties of Markov chains. Computational implementation of these wavelets and some clear-cut applications are presented. Proposed wavelets are suitable for signal denoising.; Comment: 18 pages, 6 figures

Higher-Order Properties of Analytic Wavelets

Lilly, J. M.; Olhede, S. C.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Relevância na Pesquisa
36.38%
The influence of higher-order wavelet properties on the analytic wavelet transform behavior is investigated, and wavelet functions offering advantageous performance are identified. This is accomplished through detailed investigation of the generalized Morse wavelets, a two-parameter family of exactly analytic continuous wavelets. The degree of time/frequency localization, the existence of a mapping between scale and frequency, and the bias involved in estimating properties of modulated oscillatory signals, are proposed as important considerations. Wavelet behavior is found to be strongly impacted by the degree of asymmetry of the wavelet in both the frequency and the time domain, as quantified by the third central moments. A particular subset of the generalized Morse wavelets, recognized as deriving from an inhomogeneous Airy function, emerge as having particularly desirable properties. These "Airy wavelets" substantially outperform the only approximately analytic Morlet wavelets for high time localization. Special cases of the generalized Morse wavelets are examined, revealing a broad range of behaviors which can be matched to the characteristics of a signal.; Comment: 15 pages, 6 Postscript figures

$p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators

Khrennikov, A. Yu.; Shelkovich, V. M.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 15/12/2006
Relevância na Pesquisa
36.47%
In this paper we study some problems related with the theory of multidimensional $p$-adic wavelets in connection with the theory of multidimensional $p$-adic pseudo-differential operators (in the $p$-adic Lizorkin space). We introduce a new class of $n$-dimensional $p$-adic compactly supported wavelets. In one-dimensional case this class includes the Kozyrev $p$-adic wavelets. These wavelets (and their Fourier transforms) form an orthonormal complete basis in ${\cL}^2(\bQ_p^n)$. A criterion for a multidimensional $p$-adic wavelet to be an eigenfunction for a pseudo-differential operator is derived. We prove that these wavelets are eigenfunctions of the Taibleson fractional operator. Since many $p$-adic models use pseudo-differential operators (fractional operator), these results can be intensively used in applications. Moreover, $p$-adic wavelets are used to construct solutions of linear and {\it semi-linear} pseudo-differential equations.

Diffusive wavelets on the Spin group

Bernstein, Swanhild; Ebert, Svend; Sommen, Franciscus
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Relevância na Pesquisa
36.43%
The first part of this article is devoted to a brief review of the results about representation theory of the spin group Spin(m) from the point of view of Clifford analysis. In the second part we are interested in Clifford-valued functions and wavelets on the sphere. The connection of representations of Spin(m) and the concept of diffusive wavelets leads naturally to investigations of a modified diffusion equation on the sphere, that makes use of the Gamma operator. We will achieve to obtain Clifford-valued diffusion wavelets with respect to a modified diffusion operator. Since we are able to characterize all representations of Spin(m) and even to obtain all eigenvectors of the (by representation) regarded Casimir operator in representation spaces, it seems appropriate to look at functions on Spin(m) directly. Concerning this, our aim shall be to formulate eigenfunctions for the Laplace-Beltrami operator on Spin(m) and give the series expansion of the heat kernel on Spin(m) in terms of eigenfunctions.; Comment: 28 pages. arXiv admin note: text overlap with arXiv:0809.1408 1 reference added, motivation part rewritten

Uncertainty constants and quasispline wavelets

Lebedeva, E. A.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 17/12/2009
Relevância na Pesquisa
36.47%
In 1996 Chui and Wang proved that the uncertainty constants of scaling and wavelet functions tend to infinity as smoothness of the wavelets grows for a broad class of wavelets such as Daubechies wavelets and spline wavelets. We construct a class of new families of wavelets (quasispline wavelets) whose uncertainty constants tend to those of the Meyer wavelet function used in construction.; Comment: 27 pages

Continuous Wavelets on Compact Manifolds

Geller, Daryl; Mayeli, Azita
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 26/11/2008
Relevância na Pesquisa
36.4%
Let $\bf M$ be a smooth compact oriented Riemannian manifold, and let $\Delta_{\bf M}$ be the Laplace-Beltrami operator on ${\bf M}$. Say $0 \neq f \in \mathcal{S}(\RR^+)$, and that $f(0) = 0$. For $t > 0$, let $K_t(x,y)$ denote the kernel of $f(t^2 \Delta_{\bf M})$. We show that $K_t$ is well-localized near the diagonal, in the sense that it satisfies estimates akin to those satisfied by the kernel of the convolution operator $f(t^2\Delta)$ on $\RR^n$. We define continuous ${\cal S}$-wavelets on ${\bf M}$, in such a manner that $K_t(x,y)$ satisfies this definition, because of its localization near the diagonal. Continuous ${\cal S}$-wavelets on ${\bf M}$ are analogous to continuous wavelets on $\RR^n$ in $\mathcal{S}(\RR^n)$. In particular, we are able to characterize the H$\ddot{o}$lder continuous functions on ${\bf M}$ by the size of their continuous ${\mathcal{S}}-$wavelet transforms, for H$\ddot{o}$lder exponents strictly between 0 and 1. If $\bf M$ is the torus $\TT^2$ or the sphere $S^2$, and $f(s)=se^{-s}$ (the ``Mexican hat'' situation), we obtain two explicit approximate formulas for $K_t$, one to be used when $t$ is large, and one to be used when $t$ is small.

A Class of non-MRA Band-limited Wavelets

Behera, Biswaranjan; Madan, Shobha
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 16/08/2001
Relevância na Pesquisa
36.4%
We give a characterization of a class of band-limited wavelets of $L^2({\mathbb R})$ and show that none of these wavelets come from a multiresolution analysis (MRA). For each $n\geq 2$, we construct a subset $S_n$ of ${\mathbb R}$ which is symmetric with respect to the origin. We give necessary and sufficient conditions on a function $\psi\in L^2({\mathbb R})$ with supp $\hat\psi\subseteq S_n$ to be an orthonormal wavelet. This result generalizes the characterization of a class of wavelets of E. Hern\'andez and G. Weiss. The dimension functions associated with these wavelets are also computed explicitly. Starting from the wavelets we have constructed, we are able to construct examples of wavelets in each of the equivalence classes of wavelets defined by E. Weber.; Comment: AMS Latex, 17 pages

Construction of M - Band bandlimited wavelets for orthogonal decomposition

Tennant, Bryce
Fonte: Rochester Instituto de Tecnologia Publicador: Rochester Instituto de Tecnologia
Tipo: Tese de Doutorado
EN_US
Relevância na Pesquisa
46.4%
While bandlimited wavelets and associated IIR filters have shown serious potential in areas of pattern recognition and communications, the dyadic Meyer wavelet is the only known approach to construct bandlimited orthogonal decomposition. The sine scaling function and wavelet are a special case of the Meyer. Previous works have proposed a M - Band extension of the Meyer wavelet without solving the problem. One key contribution of this thesis is the derivation of the correct bandlimits for the scaling function and wavelets to guarantee an orthogonal basis. In addition, the actual construction of the wavelets based upon these bandlimits is developed. A composite wavelet will be derived based on the M scale relationships from which we will extract the wavelet functions. A proper solution to this task is proposed which will generate associated filters with the knowledge of the scaling function and the constraints for Mband orthogonality.

Matched wavelet construction and its application to target detection

Chapa, Joseph
Fonte: Rochester Instituto de Tecnologia Publicador: Rochester Instituto de Tecnologia
Tipo: Dissertação
EN_US
Relevância na Pesquisa
36.4%
This dissertation develops a new wavelet design technique that produces a wavelet that matches a desired signal in the least squares sense. The Wavelet Transform has become very popular in signal and image processing over the last 6 years because it is a linear transform with an infinite number of possible basis functions that provides localization in both time (space) and frequency (spatial frequency). The Wavelet Transform is very similar to the matched filter problem, where the wavelet acts as a zero mean matched filter. In pattern recognition applications where the output of the Wavelet Transform is to be maximized, it is necessary to use wavelets that are specifically matched to the signal of interest. Most current wavelet design techniques, however, do not design the wavelet directly, but rather, build a composite wavelet from a library of previously designed wavelets, modify the bases in an existing multiresolution analysis or design a multiresolution analysis that is generated by a scaling function which has a specific corresponding wavelet. In this dissertation, an algorithm for finding both symmetric and asymmetric matched wavelets is developed. It will be shown that under certain conditions, the matched wavelets generate an orthonormal basis of the Hilbert space containing all finite energy signals. The matched orthonormal wavelets give rise to a pair of Quadrature Mirror Filters (QMF) that can be used in the fast Discrete Wavelet Transform. It will also be shown that as the conditions are relaxed...