Página 1 dos resultados de 583 itens digitais encontrados em 0.007 segundos

Uncoating of clathrin-coated vesicles by uncoating ATPase from developing peas.

Kirsch, T; Beevers, L
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /09/1993 EN
Relevância na Pesquisa
27.74%
A cytosolic ATPase (an enzyme that dissociates clathrin from clathrin-coated vesicles in the presence of ATP) was isolated from developing pea (Pisum sativum L.) cotyledons using chromatography on ATP-agarose. After chromatography on phenyl Sepharose, the fraction with uncoating activity was enriched in a doublet of 70-kD peptides. Using chromatofocusing, it was possible to produce fractions enriched in the upper component of the doublet of 70-kD peptides; these fractions still retained ATP-dependent uncoating activity. In western blot analysis, antibodies against a member of the 70-kD family of heat-shock proteins interacted with the upper component of the doublet of the 70-kD peptides from the phenyl Sepharose-purified fractions. On the basis of these data, it appears that the uncoating ATPase may be a member of the 70-kD family of heat-shock proteins. The uncoating activity removed clathrin from both pea and bovine brain clathrin-coated vesicles. The uncoating ATPase from bovine brain also uncoated coated vesicles from peas. Pea clathrin-coated vesicles that were prepared by three different methods were uncoated to different extents by the plant uncoating ATPase. Different populations of clathrin-coated vesicles from the same preparation showed differential sensitivity to the uncoating ATPase. Limited proteolysis of the clathrin light chains in the protein coat abolished the susceptibility of the clathrin-coated vesicles to the uncoating ATPase. The properties of the uncoating ATPase isolated from developing pea cotyledons are similar to those of uncoating ATPases previously described from mammalian and yeast systems. It appears that despite dissimilarities in composition of the clathrin components of the vesicles from the respective sources...

Protective antibodies inhibit reovirus internalization and uncoating by intracellular proteases.

Virgin, H W; Mann, M A; Tyler, K L
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /10/1994 EN
Relevância na Pesquisa
27.49%
We identified in vitro correlates of in vivo protection mediated by nonneutralizing antibodies specific for reovirus capsid proteins. We defined mechanisms of antibody action by analyzing monoclonal antibody (MAb) effects at sequential steps in reovirus serotype 3 strain Dearing (T3D) infection of L cells. Two types of experiments showed that protective MAbs specific for the outer capsid proteins sigma 3 or mu 1 inhibited T3D infection independent of effects on binding. First, MAbs which had no effect on T3D binding inhibited T3D growth. Second, MAb-coated T3D attached to L cells did not replicate as efficiently as T3D without bound antibody. We therefore defined sigma 3-specific MAb effects on postbinding steps in T3D infection. T3D coated with MAb sigma 3-10G10 exhibited prolonged sensitivity to growth inhibition by ammonium chloride. Since ammonium chloride inhibits endosomal acidification and proteolytic processing of the T3D capsid, this suggested that MAbs inhibit early steps in T3D infection. This was confirmed by direct demonstration that several sigma 3-specific MAbs inhibited proteolytic uncoating of virions by fibroblasts. We identified two mechanisms for antibody-mediated inhibition of virion uncoating: (i) inhibition of internalization of T3D-MAb complexes bound to the cell surface...

Intracellular distribution of input vesicular stomatitis virus proteins after uncoating.

Rigaut, K D; Birk, D E; Lenard, J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /05/1991 EN
Relevância na Pesquisa
27.64%
We have examined the fate of input viral proteins following the uncoating of vesicular stomatitis virus (VSV) by immunofluorescence microscopy, immunoelectron microscopy, and cell fractionation. VSV was adsorbed to BHK cells and allowed to become internalized in the presence of 100 mM NH4Cl; the NH4Cl was then removed to initiate synchronized uncoating. The three major structural proteins of VSV, the matrix protein (M), the nucleocapsid protein (N), and the glycoprotein (G), were each distributed uniquely after uncoating. Immunofluorescence microscopy showed that both G and N proteins retained a punctate distribution, whereas M protein was diffusely distributed throughout the cytoplasm, suggesting that it had become soluble. Immunoelectron microscopy showed that N protein was found in clusters (presumably in intact nucleocapsids) associated with the cell cytoskeleton and in unfused virions in endosomes and lysosomes. M protein was found diffusely distributed throughout the cytoplasm and also in endosomes and lysosomes. G protein was found only in association with endosomes and lysosomes after uncoating. Electrophoretic analysis of the high-speed cytosol fraction from infected cells showed that it contained chiefly M protein. The amount of M protein in the cytosol increased continuously during 90 min of uncoating...

An intragenic revertant of a poliovirus 2C mutant has an uncoating defect.

Li, J P; Baltimore, D
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /03/1990 EN
Relevância na Pesquisa
27.56%
A revertant was isolated from a temperature-sensitive poliovirus 2C mutant, 2C-31, which is defective in viral RNA synthesis. This revertant, called 2C-31R1, grew well at 39 degrees C and was not defective in RNA synthesis. However, in contrast to its parental mutant, 2C-31R1 was cold sensitive and could hardly grow at all at 32 degrees C. Analysis of a single-cycle growth revealed that 2C-31R1 was defective in virion uncoating at 32 degrees C, and a substantial amount (more than 30%) of input viruses could be recovered as infectious particles from an infected cell lysate up to 6 h postinfection. The uncoating defect and the inability to grow at cold temperatures could be overcome by a brief incubation at the permissive temperature (39 degrees C) before the infection was continued at 32 degrees C. cDNA cloning and mix-and-match recombination experiments indicated that the defect in uncoating was the result of two secondary point mutations, seven nucleotides apart, in the 2C-coding sequence downstream of the inserted linker which is the original mutation in the parental 2C-31 genome. Another revertant, 2C-31R3, isolated from the same 2C-31 stock, was not defective in uncoating and appeared to be a secondary revertant that contained an intragenic suppressor for the uncoating defect. The uncoating defect of 2C-31R1 could be complemented by type 2 poliovirus. These results suggested that protein 2C...

Kinetics of poliovirus uncoating in HeLa cells in a nonacidic environment.

Gromeier, M; Wetz, K
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /08/1990 EN
Relevância na Pesquisa
27.56%
Lysis of HeLa cells infected with poliovirus revealed intact virus; 135S particles, devoid of VP4 but containing the viral RNA; and 80S empty capsids. During infection the kinetics of poliovirus uncoating showed a continuous decrease of intact virus, while the number of 135S particles and empty shells increased. After 1.5 h of infection conformational transition to altered particles resulted in complete disappearance of intact virions. To investigate the mechanism of poliovirus uncoating, which has been suggested to depend on low pH in endosomal compartments of cells, we used lysosomotropic amines to raise the pH in these vesicles. In the presence of ammonium chloride, however, the kinetics of uncoating were similar to those for untreated cells, whereas in cells treated with methylamine, monensin, or chloroquine, uncoating was merely delayed by about 30 min. This effect could be attributed to a delay of virus entry into cells after treatment with methylamine and monensin, whereas chloroquine stabilized the viral capsid itself. Thus, elevation of endosomal pH did not affect virus uncoating. We therefore propose a mechanism of poliovirus uncoating which is independent of low pH.

Isolation and characterization of polyoma uncoating intermediates from the nuclei of infected mouse cells.

Winston, V D; Bolen, J B; Consigli, R A
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /03/1980 EN
Relevância na Pesquisa
27.49%
A method was developed which enabled the efficient recovery of polyoma uncoating intermediates from the nuclei of infected cells at early times after infection (15 min to 12 h). Cells were infected with radiolabeled virus and lysed with the detergent Nonidet P-40. The nuclei were then collected and sonicated, and the products were analyzed on sucrose gradients. The uncoating intermediate sedimented at 190S and was a viral DNA-protein complex closely associated with a structure of host origin. The host material associated with the 190S uncoating intermediate was determined by polyacrylamide gel electrophoresis and visualized by electron microscopy. The amount of 190S uncoating intermediate found in the nucleus increased with time after infection. The viral DNA was predominantly for I. All of the viral proteins were present in the 190S uncoating intermediate in amounts similar to those found in viral DNA-protein complex cores.

Uncoating of adenovirus type 2.

Mirza, M A; Weber, J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /05/1979 EN
Relevância na Pesquisa
27.49%
The uncoating of adenovirus type 2 and a temperature-sensitive mutant, tsl, was studied. HEp-2 cells were infected with 32P- OR 125I-labeled purified virions for various lengths of time, and the nuclear and cytoplasmic fractions were analyzed by sucrose gradient velocity sedimentation and sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. Within 1 h of infection, virions were converted into three subviral structures: (1) subviral structures in the cytoplasm with a density greater than virions but which qualitatively still contained all virus polypeptides; (ii) corelike structures associated with both the nuclear and cytoplasmic fractions and composed of viral DNA and polypeptides VIa2, V and PVII; and (iii) putative DNA-terminal protein complexes in the nuclei. The kinetic and compartmentalization studies suggested that the DNA-terminal protein complex is the end product of uncoating. The virions which were synthesized by tsl at the nonpermissive temperature and contained the precursor polypeptides PVI and PVII were found to be blocked in uncoating at the corelike stage. This block in uncoating provides the explanation for the lack of infectivity of these virions. A model for the uncoating of adenovirus is proposed.

Trimeric binding of the 70-kD uncoating ATPase to the vertices of clathrin triskelia: a candidate intermediate in the vesicle uncoating reaction

Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 01/10/1989 EN
Relevância na Pesquisa
27.64%
Clathrin-coated vesicles were uncoated with the 70-kD "uncoating ATPase" from bovine brain, and the molecular products were visualized by freeze-etch electron microscopy. This yielded images of released clathrin triskelia with up to three 70-kD uncoating ATPase molecules bound to their vertices. Likewise, incubation of soluble clathrin triskelia with purified uncoating ATPase also led to trimeric binding of the ATPase to the vertices of clathrin triskelia. However, this occurred only when either EDTA or nonhydrolyzable analogues of ATP were present, in which case the ATPase also appeared to self-associate. When ATP was present instead, no 70-kD ATPases could be found on clathrin triskelia and all ATPases remained monomeric. These observations support the notion that ATP controls an allosteric conversion of the 70- kD uncoating ATPase between two different molecular conformations, an ATP-charged state in which the molecule has relatively low affinity for itself as well as low affinity for clathrin, and an ATP-discharged state in which both of these affinities are high. We presume that in vivo, the latter condition is brought about by ATP hydrolysis and product release, at which point the ATPase will bind tightly to clathrin and/or self-associate. We further propose that these reactions...

Role of Human Immunodeficiency Virus Type 1 Integrase in Uncoating of the Viral Core▿

Briones, Marisa S.; Dobard, Charles W.; Chow, Samson A.
Fonte: American Society for Microbiology (ASM) Publicador: American Society for Microbiology (ASM)
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
27.56%
After membrane fusion with a target cell, the core of human immunodeficiency virus type 1 (HIV-1) enters into the cytoplasm, where uncoating occurs. The cone-shaped core is composed of the viral capsid protein (CA), which disassembles during uncoating. The underlying factors and mechanisms governing uncoating are poorly understood. Several CA mutations can cause changes in core stability and a block at reverse transcription, demonstrating the requirement for optimal core stability during viral replication. HIV-1 integrase (IN) catalyzes the insertion of the viral cDNA into the host genome, and certain IN mutations are pleiotropic. Similar to some CA mutants, two IN mutants, one with a complete deletion of IN (NL-ΔIN) and the other with a Cys-to-Ser substitution (NL-C130S), were noninfectious, with a replication block at reverse transcription. Compared to the wild type (WT), the cytoplasmic CA levels of the IN mutants in infected cells were reduced, suggesting accelerated uncoating. The role of IN during uncoating was examined by isolating and characterizing cores from NL-ΔIN and NL-C130S. Both IN mutants could form functional cores, but the core yield and stability were decreased. Also, virion incorporation of cyclophilin A (CypA)...

A Spatio-Temporal Analysis of Matrix Protein and Nucleocapsid Trafficking during Vesicular Stomatitis Virus Uncoating

Mire, Chad E.; White, Judith M.; Whitt, Michael A.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
27.49%
To study VSV entry and the fate of incoming matrix (M) protein during virus uncoating we used recombinant viruses encoding M proteins with a C-terminal tetracysteine tag that could be fluorescently labeled using biarsenical (Lumio) compounds. We found that uncoating occurs early in the endocytic pathway and is inhibited by expression of dominant-negative (DN) Rab5, but is not inhibited by DN-Rab7 or DN-Rab11. Uncoating, as defined by the separation of nucleocapsids from M protein, occurred between 15 and 20 minutes post-entry and did not require microtubules or an intact actin cytoskeleton. Unexpectedly, the bulk of M protein remained associated with endosomal membranes after uncoating and was eventually trafficked to recycling endosomes. Another small, but significant fraction of M distributed to nuclear pore complexes, which was also not dependent on microtubules or polymerized actin. Quantification of fluorescence from high-resolution confocal micrographs indicated that after membrane fusion, M protein diffuses across the endosomal membrane with a concomitant increase in fluorescence from the Lumio label which occurred soon after the release of RNPs into the cytoplasm. These data support a new model for VSV uncoating in which RNPs are released from M which remains bound to the endosomal membrane rather than the dissociation of M protein from RNPs after release of the complex into the cytoplasm following membrane fusion.

Revisiting HIV-1 uncoating

Arhel, Nathalie
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artigo de Revista Científica
Publicado em 17/11/2010 EN
Relevância na Pesquisa
27.67%
HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus...

Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription

Hulme, Amy E.; Perez, Omar; Hope, Thomas J.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
27.67%
During the early stages of HIV-1 replication the conical capsid composed of p24CA protein dissociates from the rest of the cytoplasmic viral complex by a process called uncoating. Although proper uncoating is known to be required for HIV-1 infection, many questions remain about the timing and factors involved in the process. Here we have used two complementary assays to study the process of uncoating in HIV-1–infected cells, specifically looking at the timing of uncoating and its relationship to reverse transcription. We developed a fluorescent microscopy-based uncoating assay that detects the association of p24CA with HIV-1 viral complexes in cells. We also used an owl monkey kidney (OMK) cell assay that is based on timed TRIM-CypA–mediated restriction of HIV-1 replication. Results from both assays indicate that uncoating is initiated within 1 h of viral fusion. In addition, treatment with the reverse transcriptase inhibitor nevirapine delayed uncoating in both assays. Analysis of reverse transcription products in OMK cells revealed that the generation of early reverse transcription products coincides with the timing of uncoating in these assays. Collectively, these results suggest that some aspect of reverse transcription has the ability to influence the kinetics of uncoating.

The Host Proteins Transportin SR2/TNPO3 and Cyclophilin A Exert Opposing Effects on HIV-1 Uncoating

Shah, Vaibhav B.; Shi, Jiong; Hout, David R.; Oztop, Ilker; Krishnan, Lavanya; Ahn, Jinwoo; Shotwell, Matthew S.; Engelman, Alan; Aiken, Christopher
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /01/2013 EN
Relevância na Pesquisa
27.56%
Following entry of the HIV-1 core into target cells, productive infection depends on the proper disassembly of the viral capsid (uncoating). Although much is known regarding HIV-1 entry, the actions of host cell proteins that HIV-1 utilizes during early postentry steps are poorly understood. One such factor, transportin SR2 (TRN-SR2)/transportin 3 (TNPO3), promotes infection by HIV-1 and some other lentiviruses, and recent studies have genetically linked TNPO3 dependence of infection to the viral capsid protein (CA). Here we report that purified recombinant TNPO3 stimulates the uncoating of HIV-1 cores in vitro. The stimulatory effect was reduced by RanGTP, a known ligand for transportin family members. Depletion of TNPO3 in target cells rendered HIV-1 less susceptible to inhibition by PF74, a small-molecule HIV-1 inhibitor that induces premature uncoating. In contrast to the case for TNPO3, addition of the CA-binding host protein cyclophilin A (CypA) inhibited HIV-1 uncoating and reduced the stimulatory effect of TNPO3 on uncoating in vitro. In cells in which TNPO3 was depleted, HIV-1 infection was enhanced 4-fold by addition of cyclosporine, indicating that the requirement for TNPO3 in HIV-1 infection is modulated by CypA-CA interactions. Although TNPO3 was localized primarily to the cytoplasm...

Human Enterovirus 71 Uncoating Captured at Atomic Resolution

Lyu, Ke; Ding, Jie; Han, Jian-Feng; Zhang, Yu; Wu, Xiao-Yan; He, Ya-Ling; Qin, Cheng-Feng; Chen, Rong
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/2014 EN
Relevância na Pesquisa
27.56%
Human enterovirus 71 (EV71) is the major causative agent of severe hand-foot-and-mouth diseases (HFMD) in young children, and structural characterization of EV71 during its life cycle can aid in the development of therapeutics against HFMD. Here, we present the atomic structures of the full virion and an uncoating intermediate of a clinical EV71 C4 strain to illustrate the structural changes in the full virion that lead to the formation of the uncoating intermediate prepared for RNA release. Although the VP1 N-terminal regions observed to penetrate through the junction channel at the quasi-3-fold axis in the uncoating intermediate of coxsackievirus A16 were not observed in the EV71 uncoating intermediate, drastic conformational changes occur in this region, as has been observed in all capsid proteins. Additionally, the RNA genome interacts with the N-terminal extensions of VP1 and residues 32 to 36 of VP3, both of which are situated at the bottom of the junction. These observations highlight the importance of the junction for genome release. Furthermore, EV71 uncoating is associated with apparent rearrangements and expansion around the 2- and 5-fold axes without obvious changes around the 3-fold axes. Therefore, these structures enabled the identification of hot spots for capsid rearrangements...

The CsA washout assay to detect HIV-1 uncoating in infected cells

Hulme, Amy E.; Hope, Thomas J.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em //2014 EN
Relevância na Pesquisa
27.49%
Uncoating is an early step of HIV-1 replication in which the viral capsid disassembles by p24 capsid (p24CA) protein dissociating from the viral complex. Although uncoating is required for HIV-1 replication, many questions remain about the mechanism of this process as well as its impact on other steps in viral replication. Here we describe a recently developed assay to study the process of uncoating in HIV-1 infected cells. The CsA washout assay is a cell based assay that utilizes the HIV-1 restriction factor TRIM-CypA to detect and inhibit infection of coated viral complexes. Owl monkey kidney (OMK) cells are infected with a GFP reporter virus and TRIM-CypA restriction is switched on at various times post-infection allowing the kinetics of uncoating to be monitored in infected cells. This assay also can be used to examine the effect of different viral or cellular factors on the process of uncoating.

Raman Spectroscopic Signatures of Echovirus 1 Uncoating

Ruokola, Päivi; Dadu, Elina; Kazmertsuk, Artur; Häkkänen, Heikki; Marjomäki, Varpu; Ihalainen, Janne A.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /08/2014 EN
Relevância na Pesquisa
27.49%
In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact virion, those of the proteins of the heat-treated particles indicated reduced α-helix content with respect to β-sheets and coil structures. Changes observed in tryptophan and tyrosine signals suggest an increasingly hydrophilic environment around these residues. RNA signals revealed a change in the environment of the genome and in its conformation. The ionized-carbonyl vibrations showed small changes between the intact virion and the uncoating intermediate, which points to cleavage of salt bridges in the protein structure during the uncoating process. In conclusion...

HIV-1 Uncoating Is Facilitated by Dynein and Kinesin 1

Lukic, Zana; Dharan, Adarsh; Fricke, Thomas; Diaz-Griffero, Felipe; Campbell, Edward M.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /12/2014 EN
Relevância na Pesquisa
27.72%
Following entry into the target cell, human immunodeficiency virus type 1 (HIV-1) must reverse transcribe its RNA genome to DNA and traffic to the nuclear envelope, where the viral genome is translocated into the nucleus for subsequent integration into the host cell chromosome. During this time, the viral core, which houses the genome, undergoes a poorly understood process of disassembly, known as uncoating. Collectively, many studies suggest that uncoating is tightly regulated to allow nuclear import of the genome while minimizing the exposure of the newly synthesized DNA to cytosolic DNA sensors. However, whether host cellular proteins facilitate this process remains poorly understood. Here we report that intact microtubules facilitate HIV-1 uncoating in target cells. Disruption of microtubules with nocodazole substantially delays HIV-1 uncoating, as revealed with three different assay systems. This defect in uncoating did not correlate with defective reverse transcription at early times postinfection, demonstrating that microtubule-facilitated uncoating is distinct from the previously reported role of viral reverse transcription in the uncoating process. We also find that pharmacological or small interfering RNA (siRNA)-mediated inhibition of cytoplasmic dynein or the kinesin 1 heavy chain KIF5B delays uncoating...

Fluorescent Image Analysis of HIV-1 and HIV-2 Uncoating Kinetics in the Presence of Old World Monkey TRIM5α

Takeda, Eri; Kono, Ken; Hulme, Amy E.; Hope, Thomas J.; Nakayama, Emi E.; Shioda, Tatsuo
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 24/03/2015 EN
Relevância na Pesquisa
27.67%
Uncoating of Human Immunodeficiency Virus type 1 (HIV-1) and type 2 (HIV-2) conical cores is an important early step for establishment of infection. In Old World Monkey (OWM) cells, the TRIM5α cellular factor potently suppresses an early step of infection by HIV-1. Previously, biochemical studies using whole cell lysates of infected cells revealed that OWM TRIM5α accelerates the uncoating of HIV-1, leading to premature reverse transcription. In the present study, we re-evaluated uncoating kinetics of HIV-1 in the presence of OWM TRIM5α by using an in situ uncoating assay, which allowed us to differentiate productive HIV-1 entry from simple (non-productive) endocytosis. Results showed that the uncoating kinetics of HIV-1 was indeed accelerated in the presence of OWM TRIM5α. Furthermore, we adapted an in situ uncoating assay to HIV-2, which showed wide variations in TRIM5α sensitivity among different isolates. HIV-2 isolate GH123, whose infectivity was suppressed by cynomolgus monkey (CM) TRIM5α, showed accelerated uncoating in the presence of CM TRIM5α. In contrast, mutant HIV-2 ASA, whose infectivity was unaltered by CM TRIM5α, showed no change in uncoating kinetics in the presence of CM TRIM5α. These results confirmed and further extended the previous notion that accelerated uncoating is associated with restriction activity of TRIM5α against lentiviruses.

Structure and uncoating of immature adenovirus

San Martín, Carmen; Pérez-Berná, Ana J.; Marabini, Roberto; Scheres, Sjors H. W.; Menéndez-Conejero, Rosa; Dmitriev, Igor P.; Curiel, David T.; Mangel, Walter F.; Flint, S. Jane
Fonte: Elsevier Publicador: Elsevier
Tipo: Artículo Formato: 1345238 bytes; application/pdf
ENG
Relevância na Pesquisa
37.3%
Maturation via proteolytical processing is a common trait in the viral world, and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins, but ends with proteolytically processed versions in the mature virion; and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytical processing are not infectious. We present the 3D structure of immature adenovirus particles, as represented by the thermosensitive mutant Ad2 ts1 grown under nonpermissive conditions, and compare it with the mature capsid. Our 3DEM maps at subnanometer resolution indicate that adenovirus maturation does not involve large scale conformational changes in the capsid. Difference maps reveal the location of unprocessed peptides pIIIa and pVI and help to define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses...

An intragenic revertant of a poliovirus 2C mutant has an uncoating defect

Li, Jing-Po; Baltimore, David
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Article; PeerReviewed Formato: application/pdf
Publicado em /03/1990
Relevância na Pesquisa
27.56%
A revertant was isolated from a temperature-sensitive poliovirus 2C mutant, 2C-31, which is defective in viral RNA synthesis. This revertant, called 2C-31R1, grew well at 39 degrees C and was not defective in RNA synthesis. However, in contrast to its parental mutant, 2C-31R1 was cold sensitive and could hardly grow at all at 32 degrees C. Analysis of a single-cycle growth revealed that 2C-31R1 was defective in virion uncoating at 32 degrees C, and a substantial amount (more than 30%) of input viruses could be recovered as infectious particles from an infected cell lysate up to 6 h postinfection. The uncoating defect and the inability to grow at cold temperatures could be overcome by a brief incubation at the permissive temperature (39 degrees C) before the infection was continued at 32 degrees C. cDNA cloning and mix-and-match recombination experiments indicated that the defect in uncoating was the result of two secondary point mutations, seven nucleotides apart, in the 2C-coding sequence downstream of the inserted linker which is the original mutation in the parental 2C-31 genome. Another revertant, 2C-31R3, isolated from the same 2C-31 stock, was not defective in uncoating and appeared to be a secondary revertant that contained an intragenic suppressor for the uncoating defect. The uncoating defect of 2C-31R1 could be complemented by type 2 poliovirus. These results suggested that protein 2C...