Página 1 dos resultados de 1943 itens digitais encontrados em 0.004 segundos

Aplicação de redes neurais na tomada de decisão no mercado de ações.; Application of neural networks in decision making in the stock market.

Gambogi, Jarbas Aquiles
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 29/05/2013 PT
Relevância na Pesquisa
66.87%
Este trabalho apresenta um sistema de trading que toma decisões de compra e de venda do índice Standard & Poors 500, na modalidade seguidor de tendência, mediante o emprego de redes neurais artificiais multicamadas com propagação para frente, no período de 5 anos, encerrado na última semana do primeiro semestre de 2012. Geralmente o critério usual de escolha de redes neurais nas estimativas de preços de ativos financeiros é o do menor erro quadrático médio entre as estimativas e os valores observados. Na seleção das redes neurais foi empregado o critério do menor erro quadrático médio na amostra de teste, entre as redes neurais que apresentaram taxas de acertos nas previsões das oscilações semanais do índice Standard & Poors 500 acima de 60% nessas amostras de teste. Esse critério possibilitou ao sistema de trading superar a taxa anual de retorno das redes neurais selecionadas pelo critério usual e, por larga margem, a estratégia de compre e segure no período. A escolha das variáveis de entrada das redes neurais recaiu entre as que capturaram o efeito da anomalia do momento dos preços do mercado de ações no curto prazo, fenômeno amplamente reconhecido na literatura financeira.; This work presents a trend follower system that makes decisions to buy and sell short the Standard & Poors 500 Index...

Utilização de inteligência artificial - (Redes neurais artificiais) no gerenciamento da produção de frangos de corte

Reali, Egidio Henrique
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.88%
Este estudo objetivou demonstrar que é possível explicar os fenômenos que ocorrem na criação de frangos de corte através de redes neurais artificiais. A estatística descritiva e a diferença entre as médias das variáveis dos dados iniciais foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foi utilizada uma série histórica de dados de produção de frangos de corte, obtidos nos anos de 2001 e 2002, fornecidos por uma Integração Avícola do Rio Grande do Sul, contendo informações de 1.516 criadores com lotes alojados em 2001 e 889 criadores com lotes alojados em 2002. Nos arquivos estavam registrados, para cada lote, suas variáveis de produção, tais como número do lote, data do alojamento, data do abate, idade ao abate, número de pintos alojados, quilogramas de ração consumidos, quilogramas de frangos produzidos, número de aves abatidas, custo do frango produzido, mortalidade, peso médio, ganho de peso diário, índice de conversão alimentar, índice de eficiência, quilogramas líquido de frangos, quilogramas de ração inicial, quilogramas de ração crescimento, quilogramas de ração abate, além de outros. Para a construção das redes neurais artificiais foi utilizado o programa computacional NeuroShell®Predictor...

Previsão contínua de níveis fluviais com redes neurais utilizando previsão de precipitação : investigação metodológica da técnica

Dornelles, Fernando
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.9%
Os sistemas de alerta de cheias exigem dos modelos de previsão de níveis, precisão e antecipação adequadas. Especialmente em bacias pequenas com resposta rápida, estas necessidades são atendidas com modelos de previsão continua, e que utilizam a previsão hidrometeorlógica como dado de entrada. Nesta pesquisa, é proposta uma exploração de recursos matemáticos na modelagem empírica de redes neurais progressivas de múltiplas camadas, abordando-se as dificuldades corriqueiras desta técnica, tais como problemas de convergência, eleição da arquitetura ótima, particionamento da amostra e índices de avaliação da qualidade do modelo. Estas dificuldades são pouco discutidas, ou até mesmo totalmente ignoradas, em grande parte dos trabalhos. A aplicação da metodologia utilizou dados da bacia do rio Quaraí, onde as cidades fronteiriças de Quaraí (Br) e Artigas (Uy) sofrem com inundações ribeirinhas. A área da bacia de contribuição é de 4.500 km², salientando-se que a bacia apresenta uma rápida resposta aos eventos de precipitação, decorrente de uma baixa capacidade de armazenamento e infiltração. O modelo proposto de previsão de níveis por redes neurais tem como entradas, níveis observados nos 2 dias anteriores e previsão numérica de precipitação (ETA-CPTEC) para até 5 dias à frente. O provável ganho em qualidade ao utilizar-se previsão de precipitação no modelo de previsão de nível foi analisado...

Um estudo sobre processamento adaptativo de sinais utilizando redes neurais; A study about adaptive signal processing using neural nets

Dorneles, Ricardo Vargas
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.9%
Nos últimos anos muito tem se pesquisado na área de arquiteturas paralelas de computadores, devido ao fato da melhora de desempenho nas arquiteturas sequenciais não estar acompanhando as necessidades crescentes de capacidade de processamento. Entre as arquiteturas paralelas, um grupo que tem recebido especial atenção por parte dos pesquisadores é o de redes neurais. Uma rede neural é uma arquitetura baseada em paralelismo massivo, na interconexão de numerosos elementos simples de processamento segundo uma determinada topologia e com uma regra de aprendizagem. As redes neurais tem tido grande importância na área de reconhecimento de padrões e diversas aplicações em reconhecimento de caracteres, imagem e voz tem sido desenvolvidas. Outra área de aplicação das redes neurais é o processamento de sinais. A característica de adaptabilidade das redes neurais torna-as apropriadas à utilização em aplicações, onde as características do sinal, ou do meio, são variáveis ou não totalmente conhecidas, como filtros adaptativos. O objetivo deste trabalho é mostrar as aplicações de redes neurais nesta área. Na primeira parte do trabalho foram implementadas aplicações de redes neurais à filtragem utilizando diversas topologias e modelos de neurônios. Os modelos implementados são aqui apresentados juntamente com os resultados das simulações. A segunda parte do trabalho consiste na aplicação de um modelo de redes neurais a um problema bem específico...

Usando redes neurais para estimação da volatilidade : redes neurais e modelo híbrido GARCH aumentado por redes neurais

Oliveira, André Barbosa
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.9%
As séries temporais financeiras são marcadas por comportamentos complexos e não-lineares. No mercado financeiro, além da trajetória das cotações, a sua variabilidade, representada pela volatilidade, consiste em importante informação para o mercado. Redes neurais são modelos não lineares flexíveis com capacidade de descrever funções de distintas classes, possuindo a propriedade de aproximadores universais. Este trabalho busca empregar redes neurais, especificamente Perceptron de múltiplas camadas com uma única camada escondida alimentada para frente (Feedforward Multilayer Perceptron), para a previsão da volatilidade. Mais ainda, é proposto um modelo híbrido que combina o modelo GARCH e redes neurais. Os modelos GARCH e redes neurais são estimados para duas séries financeiras: Índice S&P500 e cotações do petróleo tipo Brent. Os resultados indicam que a volatilidade aproximada por redes neurais é muito semelhante as estimativas dos tradicionais modelos GARCH. Suas diferenças são mais qualitativas, na forma de resposta da volatilidade estimada a choques de maior magnitude e sua suavidade, do que quantitativas, apresentando critérios de erros de previsão em relação a uma medida de volatilidade benchmark muito próximos.; The financial time series are characterized by complex and non-linear behaviors. In addition to the financial market trend in prices their variability or volatility...

Utilização de redes neurais artificiais para a classificação da resistência a antimicrobianos e sua relação com a presença de 38 genes associados a virulência isolados de amostras de Escherichia coli provenientes de frangos de corte

Rocha, Daniela Tonini da
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.87%
A Escherichia coli patogênica aviária (APEC), pertence à família Enterobacteriacea, é responsável por vários processos patológicos nas aves, atuando como agente primário ou secundário na aerossaculite, pericardite, perihepatite, peritonite, salpingite, onfalite, celulite, entre outros. O presente estudo aborda a resistência a antimicrobianos de amostras de E. coli (APEC) de uma forma inovadora, utilizando como ferramenta as redes neurais artificiais, metodologia inserida na linha de pesquisa do CDPA (Centro de Diagnóstico e Pesquisa em Patologia Aviária). A utilização de inteligência artificial, especificamente, as redes neurais artificiais (RNAs), está sendo crescentemente empregada como ferramenta para a análise de dados não lineares e multivariados, característica comum em fenômenos biológicos. O objetivo do presente trabalho foi demonstrar que é possível predizer o uso de antimicrobianos, utilizando trinta e oito genes responsáveis por distintos fatores de virulência, oriundos das amostras de Escherichia coli isoladas de frango de corte, através das redes neurais artificiais (RNAs). Além disso, verificou-se a relação entre o índice de patogenicidade (IP) e a resistência aos quatorze antimicrobianos que fazem parte do banco de dados usado para o desenvolvimento deste estudo. Neste trabalho foram utilizados os dados disponíveis referentes a 256 amostras de E. coli isoladas de camas de aviários...

Análise de estabilidade transitória de sistemas elétricos por redes neurais ARTMAP nebulosas modulares

Silveira, Maria do Carmo Gomes da
Fonte: Universidade Estadual Paulista (UNESP) Publicador: Universidade Estadual Paulista (UNESP)
Tipo: Tese de Doutorado Formato: v, 92 p. : il.
POR
Relevância na Pesquisa
66.87%
Pós-graduação em Engenharia Elétrica - FEIS; Esta pesquisa apresenta uma metodologia para a análise de estabilidade transitória (de primeira oscilação) de sistema de energia elétrica usando uma rede neural baseada na arquitetura ART (Adaptive Resonance Theory), designada rede neural nebulosa ARTMAP modular para aplicações em tempo real. A margem de segurança é empregada como critério da análise de estabilidade transitória, considerando-se faltas tipo curto-circuito trifásico com saída de linha de operação. O funcionamento das redes neurais é constituído por duas fases fundamentais: treinamento e análise. A fase de treinamento requer uma grande quantidade de processamento para a sua realização, enquanto que a fase de análise é efetivada, praticamente, sem esforço computacional. Esta é, portanto, a principal justificativa para o uso de redes neurais para a resolução de problemas complexos que exigem soluções rápidas, como é caso de aplicações em tempo real. As redes neurais ART, possuem como características primordiais, a plasticidade e a estabilidade, as quais são qualidades essenciais para a execução do treinamento e para a análise de modo eficiente. A rede neural ARTMAP nebulosa modular está sendo proposta visando proporcionar um desempenho superior...

Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia

Silva, Inara Aparecida Ferrer
Fonte: Universidade Estadual Paulista (UNESP) Publicador: Universidade Estadual Paulista (UNESP)
Tipo: Tese de Doutorado Formato: 80 f.
POR
Relevância na Pesquisa
66.89%
Pós-graduação em Engenharia Elétrica - FEIS; The fuzzy and neuro fuzzy systems have been successfully used to solve problems in various fields such as medicine, manufacturing, control, agriculture and academic applications. In recent decades, neural networks have been used to the identification, assessment and diagnosis of diseases. In this thesis we performed a comparative study among fuzzy neural networks (ANFIS), multilayer perceptron neural networks (MLP), radial basis function network (RBF) and generalized regression (GRNN) in the area of biomedical engineering and agronomy. In biomedical engineering neural networks and neuro fuzzy were trained and validated with data set from patients (91 subjects, 81 healthy and 10 hemiplegic). The GRNN network had the lowest Root Mean Square Error (RMSE), but the MLP network was able to identify a case of hemiplegia. In the area of agriculture a comparative study to estimate the wheat (Triticum aestivum) productivity was proposed using neural networks. For this study it was used data from an experimental database of wheat cultivars evaluated during two years in the region of Selvíria - MS. The validation was performed by comparing the estimated productivity through the quadratic regression curve and the output of the ANFIS with the neural networks. The RMSE error calculated with the GRNN and RBF neural networks was lower than that obtained with the quadratic regression and the ANFIS. The results obtained in the study of hemiplegia were validated using the RMSE...

Redes neurais aplicadas em estrategias de controle não linear

Laercio Ender
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 21/03/2002 PT
Relevância na Pesquisa
66.93%
As Redes Neurais Artificiais (RNA) são ferramentas computacionais, com um grande número de aplicações em técnicas de modelagem e controle de processos. Tal fato deve-se à sua capacidade em aprender com suficiente exatidão o comportamento do sistema, gerando modelos genéricos com potencial para projeto de controle não linear, quando equações do modelo são desconhecidas ou somente informações parciais de estados do processo estão disponíveis. Os modelos obtidos através de redes neurais permitem levar em consideração as não linearidades do processo, bem como as interações entre as suas variáveis. O trabalho desenvolvido explora o uso de redes neurais em estratégias de controle multivariável, enfatizando situações em que estas são utilizadas como modelos dinâmicos na geração de predições, bem como na definição de estratégias de controle totalmente baseadas em redes neurais com aprendizagem on-line. A aprendizagem on-line das redes utilizadas permite a sua adaptação continuamente ao longo do tempo, treinando-as em situações não abordadas na etapa de aprendizagem off-line. A aprendizagem oif-line das redes neurais é realizada a partir de um conjunto consistente de dados históricos de perturbações e respostas do processo...

Analise e previsões de vasões utilizando modelos de series temporais, redes neurais e redes neurais nebulosas

Rosangela Ballini
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 29/09/2000 PT
Relevância na Pesquisa
66.91%
Análise e previsão de vazões são de fundamental importância no planejamento da operação de sistemas de recursos hídricos. Uma das grandes dificuldades na previsão das séries de vazões é a presença da sazonalidade devido aos períodos de cheia e seca do ano. Os modelos estocásticos foram, por um longo tempo, a alternativa mais comum aos modelos determinísticos ou hidrológicos na análise e previsão de vazões, baseados principalmente na metodologia de Box & Jenkins. Esta metodologia exige algum tipo de manuseio nos dados para tratar a não-estacionariedade ou o uso de modelos periódicos, necessitando de uma laboriosa formulação teórica para os procedimentos estatísticos. Redes neurais artificiais, especialmente redes multi-camadas com algoritmo back-propagation vêm sendo sugeridas para análise de séries temporais devido a sua capacidade para tratar com relações não-lineares.de entrada-saída, destacando sua habilidade de aprendizado e capacidade de generalização, associação e busca paralela. Estas qualidades as tornam capazes de identificar e assimilar as características mais marcantes das séries, tais como sazonalidade, periodicidade, tendência, entre outras, muitas vezes camufladas por ruídos. A capacidade de mapeamentos complexos das redes neurais cresce com o número de camadas e neurônios...

Formulação de gorduras zero trans para recheio de biscoitos utilizando redes neurais; Formulation of zero trans fats for biscuit fillings using neural networks

Kelly Moreira Gandra
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 23/02/2011 PT
Relevância na Pesquisa
66.87%
O desafio das indústrias de alimentos na substituição da gordura trans em diversos produtos consiste no desenvolvimento de formulações que apresentem funcionalidade equivalente e viabilidade econômica. A interesterificação química tem-se mostrado a principal alternativa para a obtenção de gorduras plásticas zero ou low trans. Apesar da evolução tecnológica dos processos de produção das matérias-primas, os métodos convencionais utilizados pelas indústrias alimentícias na formulação de gorduras especiais são demorados e trabalhosos e, além de cálculos, muitos procedimentos de tentativa e erro são necessários. As redes neurais constituem um campo da ciência da computação ligado à inteligência artificial, que tem sido utilizado com sucesso na área de óleos e gorduras. Mediante a dificuldade enfrentada pelas indústrias na etapa de formulação de gorduras, o objetivo deste trabalho foi aplicar a técnica de redes neurais artificiais na formulação de blends zero trans para recheios de biscoito. Foram construídas e treinadas redes neurais do tipo perceptron multicamadas, utilizando três matérias-primas: óleo de soja e duas bases interesterificadas. O treinamento das redes neurais foi realizado utilizando-se como variáveis de saída o conteúdo de gordura sólida e o ponto de fusão de 62 exemplos de blends elaborados com as três matérias-primas e...

Redes neurais evolutivas com aprendizado extremo recursivo; Evolving neural networks with recursive extreme learning

Raul Arthur Fernandes Rosa
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 25/08/2014 PT
Relevância na Pesquisa
66.94%
Esta dissertação estuda uma classe de redes neurais evolutivas para modelagem de sistemas a partir de um fluxo de dados. Esta classe é caracterizada por redes evolutivas com estruturas feedforward e uma camada intermediária cujo número de neurônios é variável e determinado durante a modelagem. A aprendizagem consiste em utilizar métodos de agrupamento para estimar o número de neurônios na camada intermediária e algoritmos de aprendizagem extrema para determinar os pesos da camada intermediária e de saída da rede. Neste caso, as redes neurais são chamadas de redes neurais evolutivas. Um caso particular de redes evolutivas é quando o número de neurônios da camada intermediária é determinado a priori, mantido fixo, e somente os pesos da camada intermediária e de saída da rede são atualizados de acordo com dados de entrada. Os algoritmos de agrupamento e de aprendizagem extrema que compõem os métodos evolutivos são recursivos, pois a aprendizagem ocorre de acordo com o processamento de um fluxo de dados. Em particular, duas redes neurais evolutivas são propostas neste trabalho. A primeira é uma rede neural nebulosa híbrida evolutiva. Os neurônios da camada intermediária desta rede são unineurônios, neurônios nebulosos com processamento sináptico realizado por uninormas. Os neurônios da camada de saída são sigmoidais. Um algoritmo recursivo de agrupamento baseado em densidade...

Aplicação de redes neurais na formulação de gorduras para massa folhada baseada em gorduras interesterificadas de soja e algodão

Mattioni, Bruna
Fonte: Florianópolis, SC Publicador: Florianópolis, SC
Tipo: Dissertação de Mestrado Formato: 160 p.| il., grafs., tabs.
POR
Relevância na Pesquisa
66.85%
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Programa de Pós-Graduação em Ciência dos Alimentos, Florianópolis, 2010; A partir de diferentes estudos científicos que comprovaram que o consumo de ácidos graxos trans formados durante o processo de hidrogenação industrial exerce efeitos negativos sobre a saúde humana. O processo de interesterificação e a formulação utilizando gorduras interesterificadas, óleos totalmente hidrogenados e óleos vegetais se tornou uma alternativa importante para a produção de gorduras zero trans. Os métodos convencionais utilizados pelas empresas para a formulação de gorduras envolvem procedimentos de tentativa e erro, podendo acarretar perdas econômicas, de tempo, energia e matéria prima. As Redes Neurais Artificiais são modelos matemáticos que se assemelham às estruturas neurais biológicas e que tem capacidade computacional adquirida por meio de aprendizado e generalização. São ferramentas utilizadas nas mais diversas áreas para prever, classificar, otimizar, controlar, entre outras aplicações, com intuito de solucionar problemas. O objetivo do presente trabalho foi formular gorduras para massa folhada utilizando redes neurais construídas e treinadas com gorduras interesterificadas de base soja e algodão (Rede1) e base soja (Rede 2). As gorduras obtidas através das Redes Neurais e a performance dos produtos formulados com as mesmas foram comparadas com uma gordura comercial padrão. Os dados de entrada no programa para obtenção de formulações foram o teor de gordura sólida (SFC) e o ponto de fusão de uma margarina comercial para folhados (Rede 1) e uma base oleosa para folhados (Rede 2). A partir dos resultados...

Redes neurais lógicas quânticas

José da Silva, Adenilton; Bernarda Ludermir, Teresa (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
66.88%
Através da miniaturização dos componentes dos chips a cada ano a velocidade dos computadores é aproximadamente duplicada. Esta rápida redução dos componentes dos chips é conhecida como a Lei de Moore. Apesar de se manter verdadeira nos últimos anos, a lei de Moore está se aproximando de seu limite, pois os componentes dos chips estão se aproximando a escala atômica. Neste momento, será necessário considerar os efeitos da mecânica quântica sobre a computação. O estudo dos modelos de computação não convencionais, como a computação quântica, é um dos grandes desafios da pesquisa em computação no Brasil. O desenvolvimento de novos hardwares com tecnologias diferentes do silício pode ter consequências nas técnicas de desenvolvimento de hardware e software. O objetivo desta dissertação é investigar que vantagens podem ser obtidas através da aplicação de técnicas da computação quântica no desenvolvimento e treinamento de modelos de redes neurais artificiais. Três modelos de redes neurais quânticas baseados em modelos de redes neurais sem pesos foram propostos. Ao contrário dos outros modelos de redes neurais quânticas, as redes propostas nesta dissertação podem simular as redes em que foram baseadas. A principal vantagem dos modelos quânticos neurais propostos nesta dissertação está no seu algoritmo de treinamento...

Propostas de novos algoritmos para redes neurais modulares

Medeiros Outtes Alves, Victor; Darmiton da Cunha Cavalcanti, George (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
66.87%
Em muitas tarefas a máquina é mais eficiente do que o ser humano, sendo capaz de realizar com precisão e rapidez: operações matemáticas, armazenamento de dados, pesquisa textual, entre muitas outras tarefas. Porém, tarefas simples para o ser humano como o reconhecimento da face de uma pessoa, são extremamente complexas para a computação tradicional realizar. A busca por algoritmos que possuam alguma forma de inteligência similar a modelos biológicos (principalmente o modelo dos seres humanos), há décadas inspira e influencia vários pesquisadores. Uma das maiores áreas da Inteligência Computacional é a das Redes Neurais Artificiais, inspiradas na redes neurais biológicas, que são compostas por neurônios e conexões sinápticas. As redes neurais modulares se utilizam das vantagens da modularização para superarem de alguma forma as redes não modulares. Elas buscam minimizar as diferenças entre as redes naturais e artificiais. Uma rede modular é um conjunto independente de redes neurais monolíticas trabalhando em conjunto para solucionar um problema. Um dos maiores desafios na construção de redes modulares é a decomposição do problema em problemas mais simples. Este trabalho propõe novas técnicas para melhorar o desempenho de redes neurais modulares baseadas na similaridade entre classes. Entende-se por desempenho o grau de acertividade e/ou a velocidade de treinamento do modelo. Foram propostos métodos que influenciam etapas distintas da construção de uma rede modular. Duas das propostas buscam otimizar a decomposição do problema...

Projeto Híbrido de Redes Neurais

Bastos Cavalcante Prudêncio, Ricardo; Bernarda Ludermir, Teresa (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
66.91%
As Redes Neurais Artificiais (RNAs) têm sido aplicadas com sucesso em uma diversidade de problemas do mundo real. Contudo, o sucesso dessas redes para um determinado problema depende muito de um projeto bem realizado. O projeto de redes neurais envolve a definição de vários parâmetros, como, por exemplo, o tipo de rede, a arquitetura, o algoritmo de treinamento utilizado, os parâmetros de treinamento, os critérios de parada, dentre outros. A automatização (total ou parcial) do projeto de RNAs tem como objetivos principais tornar o desempenho das redes menos sensível a decisões erradas de um desenvolvedor inexperiente, além de torná-las acessíveis a usuários nãoespecialistas em redes neurais. Como solução para o problema da automatização, investigamos o uso de técnicas de Inteligência Artificial que, quando integradas com as redes neurais, resultam em Sistemas Neurais Híbridos (SNHs). Nessa dissertação, apresentamos duas aplicações desses Sistemas Híbridos para a previsão de séries temporais, um problema de relevância fundamental em muitos domínios do mundo real. Primeiramente, propomos um modelo de automatização integrando o Raciocínio Baseado em Casos (RBC) e os Algoritmos Genéticos (AGs). No nosso modelo...

Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água

Pimentel Marques, Luciana; Lins da Silva, Valdinete (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
66.88%
Os recursos hídricos vem sendo ameaçados por diversas atividades antrópicas, o que tem levado a comunidade científica a se preocupar em elaborar e discutir metodologias de se avaliar a qualidade dessas águas, quer sejam de forma físico-química ou biológica. Uma das principais ameaças ao meio ambiente é o processo de eutrofização, que é o aumento da concentração de nutrientes, como por exemplo, nitrogênio e fósforo, nos ecossistemas aquáticos. Os avanços tecnológicos computacionais permitiram que a modelagem matemática passasse a desempenhar um importante papel nos estudos de tratamento de dados de Química Ambiental, em especial de Qualidade da Água. Este fato se deve a capacidade da modelagem encarar os processos hidrológicos, físicos, químicos e biológicos de forma simplificada e prática, ainda que sejam complexos. A modelagem empírica utiliza unicamente dados experimentais, surgindo como alternativa a essa complexidade e as técnicas de sistemas inteligentes (as Redes Neurais Artificiais- RNAs) e de análise multivariada (Análise de Componentes Principais-ACP), apresentaram-se atraentes para esta finalilidade. Visando a otimização, diminuindo os custos do processo e o tempo de resposta do monitoramento...

Redes neurais artificiais no ambiente de redes industriais foundation fieldbus usando blocos funcionais padrões

Silva, Diego Rodrigo Cabral
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Engenharia Elétrica; Automação e Sistemas; Engenharia de Computação; Telecomunicações Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Engenharia Elétrica; Automação e Sistemas; Engenharia de Computação; Telecomunicações
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.85%
Industrial automation networks is in focus and is gradually replacing older architectures of systems used in automation world. Among existing automation networks, most prominent standard is the Foundation Fieldbus (FF). This particular standard was chosen for the development of this work thanks to its complete application layer specification and its user interface, organized as function blocks and that allows interoperability among different vendors' devices. Nowadays, one of most seeked solutions on industrial automation are the indirect measurements, that consist in infering a value from measures of other sensors. This can be made through implementation of the so-called software sensors. One of the most used tools in this project and in sensor implementation are artificial neural networks. The absence of a standard solution to implement neural networks in FF environment makes impossible the development of a field-indirect-measurement project, besides other projects involving neural networks, unless a closed proprietary solution is used, which dos not guarantee interoperability among network devices, specially if those are from different vendors. In order to keep the interoperability, this work's goal is develop a solution that implements artificial neural networks in Foundation Fieldbus industrial network environment...

Um estudo sobre reconhecimento visual de caracteres através de redes neurais

Osorio, Fernando Santos
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
66.85%
Este trabalho apresenta um estudo sabre reconhecimento visual de caracteres através da utilização das redes neurais. São abordados os assuntos referentes ao Processamento Digital de Imagens, aos sistemas de reconhecimento de caracteres, e as redes neurais. Ao final é apresentada uma proposta de implementação de um sistema OCR orientado ao reconhecimento de caracteres impressos, que utiliza uma rede neural desenvolvida especificamente para esta aplicação. O sistema proposto, que é denominado de sistema N2OCR, possui um protótipo implementado que também é descrito neste trabalho. Em relação ao Processamento Digital de Imagens são apresentados diversos temas, abrangendo os assuntos referentes à aquisição de imagens, ao tratamento das imagens e ao reconhecimento de padrões. A respeito da aquisição de imagens são destacados os aspectos referentes aos dispositivos de aquisição e os tipos de imagens obtidas através destes. Sobre o tratamento de imagens são abordados os aspectos referentes a imagens textuais, incluindo: halftoning, geração e modificação de histograma, limiarização e operações de filtragem. Quanto ao reconhecimento de padrões é feita uma breve análise das técnicas relacionadas a este tema. Os diversos tipos de sistemas de reconhecimento de caracteres são abordados...

Redes neurais não-supervisionadas temporais para identificação e controle de sistemas dinâmicos; Temporal unsupervised neural networks for identification and control of dynamical systems

Barreto, Guilherme de Alencar
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 20/01/2003 PT
Relevância na Pesquisa
66.95%
A pesquisa em redes neurais artificiais (RNAs) está atualmente experimentando um crescente interesse por modelos que utilizem a variável tempo como um grau de liberdade extra a ser explorado nas representações neurais. Esta ênfase na codificação temporal (temporal coding) tem provocado debates inflamados nas neurociências e áreas correlatas, mas nos últimos anos o surgimento de um grande volume de dados comportamentais e fisiológicos vêm dando suporte ao papel-chave desempenhado por este tipo de representação no cérebro [BALLARD et al. (1998)]. Contribuições ao estudo da representação temporal em redes neurais vêm sendo observadas nos mais diversos tópicos de pesquisa, tais como sistemas dinâmicos não-lineares, redes oscilatórias, redes caóticas, redes com neurônios pulsantes e redes acopladas por pulsos. Como conseqüência, várias tarefas de processamento da informação têm sido investigada via codificação temporal, a saber: classificação de padrões, aprendizagem, memória associativa, controle sensório-motor, identificação de sistemas dinâmicos e robótica. Freqüentemente, porém, não fica muito claro até que ponto a modelagem dos aspectos temporais de uma tarefa contribui para aumentar a capacidade de processamento da informação de modelos neurais. Esta tese busca apresentar...