Página 1 dos resultados de 1 itens digitais encontrados em 0.033 segundos

Métodos robustos em regressão linear para dados simbólicos do tipo intervalo

Antonio de Oliveira Domingues, Marco; Maria Cardoso Rodrigues de Souza, Renata (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
136.08%
A análise de dados simbólicos (Symbolic Data Analysis - SDA) tem se destacado como um conjunto de ferramentas úteis à análise de grandes bases de dados, aprendizagem de máquina e reconhecimento de padrões. Os dados simbólicos podem representar variáveis estruturadas, listas, intervalos e distribuições. Nesse contexto, vários métodos estatísticos têm sido estendidos para o domínio de SDA (análise de cluster, estatísticas descritivas, componentes principais, análise fatorial, regressão linear, e outras). Como exemplo, os métodos de regressão linear propostos recentemente para dados simbólicos são extensões do método dos mínimos quadrados para minimização dos erros do modelo. Estes métodos estimam os parâmetros do modelo da regressão linear considerando apenas as informações sobre os pontos médios (centros) das variáveis simbólicas, considerando os valores dos limites inferiores e superiores dos intervalos e considerando os valores dos pontos médios e das amplitudes dos intervalos. Apesar da técnica dos mínimos quadrados ser computacionalmente simples, a qualidade dos ajustes é degradada quando o conjunto sob investigação contém dados atípicos. Na análise de regressão clássica...