Página 1 dos resultados de 16 itens digitais encontrados em 0.045 segundos

Reconhecimento de gestos usando segmentação de imagens dinâmicas de mãos baseada no modelo de mistura de gaussianas e cor de pele; Gesture recognizing using segmentation of dynamic hand image based on the mixture of Gaussians model and skin color

Ribeiro, Hebert Luchetti
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 01/09/2006 PT
Relevância na Pesquisa
86.23%
O objetivo deste trabalho é criar uma metodologia capaz de reconhecer gestos de mãos, a partir de imagens dinâmicas, para interagir com sistemas. Após a captação da imagem, a segmentação ocorre nos pixels pertencentes às mãos que são separados do fundo pela segmentação pela subtração do fundo e filtragem de cor de pele. O algoritmo de reconhecimento é baseado somente em contornos, possibilitando velocidade para se trabalhar em tempo real. A maior área da imagem segmentada é considerada como região da mão. As regiões detectadas são analisadas para determinar a posição e a orientação da mão. A posição e outros atributos das mãos são rastreados quadro a quadro para distinguir um movimento da mão em relação ao fundo e de outros objetos em movimento, e para extrair a informação do movimento para o reconhecimento de gestos. Baseado na posição coletada, movimento e indícios de postura são calculados para reconhecimento um gesto significativo.; The purpose of this paper is to develop a methodology able to recognize hand gestures from dynamic images to interact with systems. After the image capture segmentation takes place where pixels belonging to the hands are separated from the background based on skin-color segmentation and background extraction. The image preprocessing can be applied before the edge detection. The recognition algorithm uses edges only; therefore it is quick enough for real time. The largest blob from the segmented image will be considered as the hand region. The detected regions are analyzed to determine position and orientation of the hand for each frame. The position and other attributes of the hands are tracked per frame to distinguish a movement from the hand in relation to the background and from other objects in movement...

Identificação de locutor usando modelos de misturas de gaussianas.; Speaker identification using Gaussian mixture models.

Cardoso, Denis Pirttiaho
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 03/04/2009 PT
Relevância na Pesquisa
76.11%
A identificação de locutor está relacionada com a seleção de um locutor dentro de um conjunto de membros pré-definidos e neste trabalho os experimentos foram realizados utilizando um sistema de identificação de locutor independente de texto baseado em modelos de mistura de gaussianas. Para realizar os testes, foi empregado o banco de voz TIMIT e sua correspondente versão corrompida por ruído de canal telefônico, isto é, NTIMIT. O aparelho fonador pode ser representado por coeficientes mel-cepstrais obtidos por meio de banco de filtros ou, alternativamente, por coeficientes de predição linear. Adicionalmente, a técnica de subtração da média cepstral é aplicada quando o banco de voz NITMIT é utilizado com o intuito de minimizar a distorção de canal intrínseca a ele. A componente da locução para a qual os coeficientes mel-cepstrais são calculados é obtida através de um detector de atividade de voz (DAV). No entanto, os DAVs são em geral sensíveis à relação de sinal-ruído da locução, sendo necessário adaptá-los para as condições de operação do sistema. É sugerida a integração no DAV de um estimador da relação de sinal-ruído baseado no método Minima Controlled Recursive Average (MCRA), que é necessário para permitir o tratamento de sinais tanto limpos quanto ruidosos. É observado que em locuções de elevada relação de sinal-ruído...

Método de reconhecimento da marcha humana por meio da fusão das características do movimento global; Recognition method of human gait by fusion of features of the global movement

Arantes, Milene
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 01/04/2010 PT
Relevância na Pesquisa
65.92%
Este trabalho propõe um novo enfoque em visão computacional aplicado a sequências de vídeo, de pessoas em movimento, para reconhecê-las por meio da marcha. O movimento humano carrega diferentes informações, considerando-se diferentes maneiras de analisá-lo. O esqueleto carrega as informações do movimento global de articulações do corpo humano e como se comportam durante a caminhada e a silhueta carreia informações referentes ao comportamento global do contorno do corpo humano. Além disso, imagens binárias e em escala de cinza possuem diferentes informações sobre o movimento humano. O método proposto considera o conjunto de frames segmentados de cada indivíduo como uma classe e cada frame como um objeto desta classe. A metodologia aplica o Modelo de Mistura de Gaussianas (GMM) para subtração de fundo, redução de escala realizada por meio de técnicas de multiresolução baseadas na Transformada Wavelet (TW) e a extração dos padrões por meio da Análise dos Componentes Principais (PCA). São propostos e ensaiados quatro novos modelos de captura de movimentos globais do corpo humano durante a marcha: o modelo Silhouette-Gray-Wavelet (SGW) captura o movimento baseado nas variações em nível de cinza; o modelo Silhouette-Binary-Wavelet (SBW) captura o movimento baseado nas informações binárias da silhueta; o modelo Silhouette-Edge-Wavelet (SEW) captura o movimento baseado nas informações contidas na borda das silhuetas e o modelo Silhouette-Skeleton-Wavelet (SSW) captura o movimento baseado do esqueleto humano. As taxas de classificações corretas obtidas separadamente a partir destes quatro diferentes modelos são então combinadas utilizando-se uma nova técnica de fusão. Os resultados demonstram excelente desempenho e mostraram a viabilidade para reconhecimento de pessoas.; This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints...

Representações hierárquicas de vocábulos de línguas indígenas brasileiras: modelos baseados em mistura de Gaussianas; Hierarchical representations of words of brazilian indigenous languages: models based on Gaussian mixture

Sepúlveda Torres, Lianet
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 08/12/2010 PT
Relevância na Pesquisa
106.4%
Apesar da ampla diversidade de línguas indígenas no Brasil, poucas pesquisas estudam estas línguas e suas relações. Inúmeros esforços têm sido dedicados a procurar similaridades entre as palavras das línguas indígenas e classificá-las em famílias de línguas. Seguindo a classificação mais aceita das línguas indígenas do Brasil, esta pesquisa propõe comparar palavras de 10 línguas indígenas brasileiras. Para isso, considera-se que estas palavras são sinais de fala e estima-se a função de distribuição de probabilidade (PDF) de cada palavra, usando um modelo de mistura de gaussianas (GMM). A PDF foi considerada um modelo para representar as palavras. Os modelos foram comparados utilizando medidas de distância para construir estruturas hierárquicas que evidenciaram possíveis relações entre as palavras. Seguindo esta linha, a hipótese levantada nesta pesquisa é que as PDFs baseadas em GMM conseguem caracterizar as palavras das línguas indígenas, permitindo o emprego de medidas de distância entre elas para estabelecer relações entre as palavras, de forma que tais relações confirmem algumas das classificações. Os parâmetros do GMM foram calculados utilizando o algoritmo Maximização da Expectância (em inglês...

Algoritmos evolutivos para modelos de mistura de gaussianas em problemas com e sem restrições; Evolutionary algorithms for gausian mixture models with and without constraints

Covões, Thiago Ferreira
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 09/12/2014 PT
Relevância na Pesquisa
86.52%
Nesta tese, são estudados algoritmos para agrupamento de dados, com particular ênfase em Agrupamento de Dados com Restrições, no qual, além dos objetos a serem agrupados, são fornecidos pelo usuário algumas informações sobre o agrupamento desejado. Como fundamentação para o agrupamento, são considerados os modelos de mistura finitos, em especial, com componentes gaussianos, usualmente chamados de modelos de mistura de gaussianas. Dentre os principais problemas que os algoritmos desenvolvidos nesta tese de doutorado buscam tratar destacam-se: (i) estimar parâmetros de modelo de mistura de gaussianas; (ii) como incorporar, de forma eficiente, restrições no processo de aprendizado de forma que tanto os dados quanto as restrições possam ser adicionadas de forma online; (iii) estimar, via restrições derivadas de conceitos pré-determinados sobre os objetos (usualmente chamados de classes), o número de grupos destes conceitos. Como ferramenta para auxiliar no desenvolvimento de soluções para tais problemas, foram utilizados algoritmos evolutivos que operam com mais de uma solução simultaneamente, além de utilizarem informações de soluções anteriores para guiar o processo de busca. Especificamente, foi desenvolvido um algoritmo evolutivo baseado na divisão e união de componentes para a estimação dos parâmetros de um modelo de mistura de gaussianas. Este algoritmo foi comparado com o algoritmo do mesmo gênero considerado estado-da-arte na literatura...

Detecção de pele humana utilizando modelos estocásticos multi-escala de textura; Skin detection for hand gesture segmentation via multi-scale stochastic texture models

Medeiros, Rafael Sachett
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
45.92%
A detecção de gestos é uma etapa importante em aplicações de interação humanocomputador. Se a mão do usuário é detectada com precisão, tanto a análise quanto o reconhecimento do gesto de mão se tornam mais simples e confiáveis. Neste trabalho, descrevemos um novo método para detecção de pele humana, destinada a ser empregada como uma etapa de pré-processamento para segmentação de gestos de mão em sistemas que visam o seu reconhecimento. Primeiramente, treinamos os modelos de cor e textura de pele (material a ser identificado) a partir de um conjunto de treinamento formado por imagens de pele. Nessa etapa, construímos um modelo de mistura de Gaussianas (GMM), para determinar os tons de cor da pele e um dicionário de textons, para textura de pele. Em seguida, introduzimos um estratégia de fusão estocástica de regiões de texturas, para determinar todos os segmentos de diferentes materiais presentes na imagem (cada um associado a uma textura). Tendo obtido todas as regiões, cada segmento encontrado é classificado com base nos modelos de cor de pele (GMM) e textura de pele (dicionário de textons). Para testar o desempenho do algoritmo desenvolvido realizamos experimentos com o conjunto de imagens SDC, projetado especialmente para esse tipo de avaliação (detecção de pele humana). Comparado com outras técnicas do estado-daarte em segmentação de pele humana disponíveis na literatura...

Predição de trafego auto-similar em redes de faixa larga

Marcelo Menezes de Carvalho
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 07/07/1998 PT
Relevância na Pesquisa
55.92%
Este trabalho tem como objetivo estudar os modelos e a predição de tráfego com características auto-similares (fractais) em redes de comunicações de faixa larga, como por exemplo, a rede ATM (Asynchronous Transfer Mode). Para isto, são estudados os principais modelos de processos estocásticos auto-similares, bem como os métodos utilizados para estimação do grau de auto-similaridade de uma série temporal. São também estudadas as principais conseqüências do fenômeno da auto-similaridade no problema da predição, estimação e controle do tráfego em redes de alta velocidade. Para fins de predição, avalia-se o uso de preditores lineares (filtros FIR) e não-lineares, estes últimos representados pelas redes neurais do tipo perceptron multicamadas FIR e Redes de Funções de Base Radiais (Radial Basis Function). A eficácia dos preditores estudados é analisada através da predição de tráfego real de redes locais Ethernet. Além disso, propõe-se um algoritmo adaptativo, baseado no algoritmo EM (Expectation- Maximization), para estimação dos parâmetros de uma mistura de densidades Gaussianas; The purpose of this work is to study the modeling and predietion of self-similar traffie signals in broadband telecommunications networks (ATM networks...

Modelação estatística com misturas e pseudo-misturas

Felgueiras, Miguel Martins, 1976-
Fonte: Universidade de Lisboa Publicador: Universidade de Lisboa
Tipo: Tese de Doutorado
Publicado em //2008 POR
Relevância na Pesquisa
45.91%
Tese de doutoramento, Estatística e Investigação Operacional (Probabilidades e Estatística), Universidade de Lisboa, Faculdade de Ciências; Quando um determinado atributo é observado numa população com várias subpopulações a amostra obtida pode ser modelada recorrendo a mistura de distribuições, que por permitirem acomodar multimodalidade e diferentes densidades são muito eficazes no ajustamento a dados. No âmbito deste trabalho estudámos as misturas infinitas e convexas mais habituais, apresentando para misturas unimodais alguns resultados assintóticos que poderão ser úteis em situações práticas. Em misturas de gaussianas, as aproximações obtidas permitem testar a igualdade das médias e a igualdade das variâncias. Para distribuições fechadas para extremos um novo tipo de misturas infinitas mas não convexas foi introduzido, permitindo pesos negativos e pesos superiores a 1. Devido à sua _exibilidade, acreditamos que estas misturas poderão ser uma séria alternativa na modelação de dados. Finalmente, analisámos misturas infinitas com parâmetro de escala Pareto. Ao aleatorizarmos o parâmetro de escala conseguimos modelos baseados no original mas de caudas mais pesadas. Devido à densidade polinomial da distribuição Pareto...

Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas

de Santana Pereira, Cristiano; Darmiton da Cunha Cavalcanti, George (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
116.57%
Seleção de protótipos é uma técnica de aprendizagem de máquina cujo objetivo é a escolha ou produção de instâncias de dados que consigam a melhor representação para os dados do problema realçando as fronteiras de decisão e mantendo a separação entre as classes. A idéia é reduzir a quantidade de dados e ainda assim obter um conjunto de protótipos que minimize o erro de classificação. As estratégias baseadas em protótipos têm sido bastante utilizadas em aplicações reais nos mais diversos domínios obtendo bons resultados. A proposta deste trabalho foi investigar técnicas de seleção de protótipos baseadas em auto-geração e mistura de gaussianas comparando com algumas técnicas clássicas. Como resultado deste estudo, um modelo híbrido combinando estas duas estratégias foi proposto. Este modelo híbrido supera algumas dificuldades destas técnicas quando analisadas isoladamente, pois eles combinam a vantagem da ausência de parâmetros da auto-geração com a maior capacidade de ajuste nas fronteiras de decisão da mistura de gaussianas. O novo modelo foi avaliado com diversos problemas considerados benchmarks da área de aprendizagem de máquina apresentando desempenho superior na maioria deles quando comparado com as técnicas de auto-geração e mistura de gaussianas analisadas. A segunda parte deste trabalho apresenta um estudo da aplicação da nova estratégia híbrida ao problema específico de segmentação de caracteres. Curvas ROC foram utilizadas para avaliar o desempenho e mais uma vez o modelo híbrido se mostrou superior

Algoritmos de agrupamento tradicionais versus sistemas de comitê de agrupamentos: análise de dados de expressão gênica

Santos Nepomuceno, Vilmar; Bernarda Ludermir, Teresa (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
PT_BR
Relevância na Pesquisa
55.92%
Este trabalho investiga o impacto do uso de comitês de agrupamentos para a análise de dados de expressão gênica. Mais especificamente, é realizada uma comparação dos desempenhos obtidos com algoritmos de combinação (comitês) com aqueles dos algoritmos de agrupamento individuais (algoritmos base). Para isso, são utilizados três métodos de comitês de agrupamento mais estabelecidos na literatura: matriz de co-associação, re-rotulagem e votação e comitês baseados em particionamento de grafos. As técnicas de agrupamento individuais escolhidas para realizar a comparação são: k-médias, mistura finita de gaussianas e o algoritmo hierárquico. Além de representarem diferentes paradigmas de agrupamento, estes algoritmos estão sendo muito utilizados no contexto de expressão gênica. Os resultados obtidos indicam que os algoritmos de comitê conseguem recuperar melhor a estrutura real dos dados, quando comparados aos algoritmos individuais. Outro aspecto observado na análise desenvolvida é que os comitês homogêneos conseguem, em geral, um melhor desempenho do que os comitês heterogêneos. De forma geral, os resultados dos experimentos indicam que, tanto os algoritmos individuais, quanto as técnicas de comitê apresentaram pequenas diferenças entre o número de grupos gerados...

Algoritmos de agrupamento aplicados a dados de expressão gênica de câncer: um estudo comparativo

Araújo, Daniel Sabino Amorim de
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
75.92%
The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using classic clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context. This work presents the first large-scale analysis of seven different clustering methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best performance in terms of recovering the true structure of the data sets. These methods also exhibited, on average, the smallest difference between the actual number of classes in the data sets and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical methods, which have been widely used by the medical community, exhibited a poorer recovery performance than that of the other methods evaluated. Moreover, as a stable basis for the assessment and comparison of different clustering methods for cancer gene expression data...

Detecção computacional de assimetrias entre mamogramas; Computational detection of asymmetries between mammograms

Ferrari, Ricardo José
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 01/04/2002 PT
Relevância na Pesquisa
55.92%
Neste trabalho foram propostas técnicas para a segmentação automática de mamogramas e para a detecção de assimetrias entre mamogramas esquerdo e direito. A segmentação é realizada através de três técnicas computacionais para a identificação de três importantes regiões anatômicas nos mamogramas: borda da mama, músculo peitoral e disco fibro-glandular. O primeiro método focaliza a identificação da borda da mama através do uso de um modelo de contorno ativo especialmente projetado para esse propósito. Neste estágio, a borda da mama é automaticamente demarcada, todos os artefatos fora dessa região são eliminados, e a região de interesse usada para a detecção do músculo peitoral é definida. No próximo estágio, a borda do músculo peitoral é determinada usando uma técnica multiresolução baseada na representação Gabor wavelets. Finalmente, um modelo de densidades da mama, baseado no modelo da mistura finita de Gaussianas, é proposto para a representação de quatro categorias de tecidos mamários com diferentes densidades. O disco fibro-glandular é identificado através da aplicação de um limiar sob as classes de densidades determinadas no modelo. Os métodos propostos foram aplicados em 84 imagens de mamogramas de projeções médio-laterais oblíqüas da base de dados Mini-MIAS ("Mammographic Image Analysis Society"...

Rastreamento de objetos em vídeos e separação em classes; Tracking of objects in videos and separation in classes

Greice Martins Freitas
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 11/06/2010 PT
Relevância na Pesquisa
66.11%
A crescente utilização de câmeras de vídeo para o monitoramento de ambientes, auxiliando no controle de entrada, saída e trânsito de indivíduos ou veículos tem aumentado a busca por sistemas visando a automatização do processo de monitoramento por vídeos. Como requisitos para estes sistemas identificam-se o tratamento da entrada e saída de objetos na cena, variações na forma e movimentação dos alvos seguidos, interações entre os alvos como encontros e separações, variações na iluminação da cena e o tratamento de ruídos presentes no vídeo. O presente trabalho analisa e avalia as principais etapas de um sistema de rastreamento de múltiplos objetos através de uma câmera de vídeo fixa e propõe um sistema de rastreamento baseado em sistemas encontrados na literatura. O sistema proposto é composto de três fases: identificação do foreground através de técnicas de subtração de fundo; associação de objetos quadro a quadro através de métricas de cor, área e posição do centróide - com o auxílio da aplicação do filtro de Kalman - e, finalmente, classificação dos objetos a cada quadro segundo um sistema de gerenciamento de objetos. Com o objetivo de verificar a eficiência do sistema de rastreamento proposto...

Aglomeração de pixels pela transformada imagem floresta e sua aplicação em segmentação de fundo de imagens natuarais; Clustering of pixels by image foresting transform and its application in background segmentation of natural images

Maíra Saboia da Silva
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 25/07/2011 PT
Relevância na Pesquisa
56.23%
Esta dissertação apresenta uma metodologia automática para separar objetos de interesse em imagens naturais. Objetos de interesse são definidos como os maiores objetos que se destacam com relação aos pixels em torno deles dentro de uma imagem. Estes objetos não precisam necessariamente estar centrados, mas devem possuir o mínimo possível de pixels na região assumida como fundo da imagem (e.g., borda de imagem com uma dada espessura). A metodologia é baseada em segmentação de fundo e pode ser dividida em duas etapas. Primeiramente, um modelo nebuloso é criado para o fundo da imagem utilizando um método de agrupamento baseado em função densidade de probabilidade das cores de fundo. A partir do modelo é criado um mapa de pertinência, onde os pixels de objeto são mais claros do que os pixels de fundo. Foram investigadas técnicas de agrupamento baseadas em deslocamento médio, transformada imagem floresta, mistura de Gaussianas e maximização da esperança. Três métodos para criação do mapa de pertinência foram propostos e comparados; um inteiramente baseado na transformada imagem floresta, o outro em mistura de Gaussianas e o terceiro em maximização da esperança. Nos dois últimos casos, o agrupamento baseado na transformada imagem floresta foi utilizado como estimativa inicial dos grupos. Em seguida...

The combination of neural estimates in prediction and decision problems

Freitas, Paulo Sérgio Abreu, 1972-
Fonte: Universidade de Lisboa Publicador: Universidade de Lisboa
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em //2008 ENG
Relevância na Pesquisa
46.34%
Tese de doutoramento em Estatística e Investigação Operacional (Análise de Sistemas), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008; In this dissertation, different ways of combining neural predictive models or neural-based forecasts are discussed. The proposed approaches consider mostly Gaussian radial basis function networks, which can be efficiently identified and estimated through recursive/adaptive methods. Two different ways of combining are explored to get a final estimate model mixing and model synthesis , with the aim of obtaining improvements both in terms of efficiency and effectiveness. In the context of model mixing, the usual framework for linearly combining estimates from different models is extended, to deal with the case where the forecast errors from those models are correlated. In the context of model synthesis, and to address the problems raised by heavily nonstationary time series, we propose hybrid dynamic models for more advanced time series forecasting, composed of a dynamic trend regressive model (or, even, a dynamic harmonic regressive model), and a Gaussian radial basis function network. Additionally, using the model mixing procedure, two approaches for decision-making from forecasting models are discussed and compared: either inferring decisions from combined predictive estimates...

Técnicas eficientes de identificação automática de locutores; Efficient automatic speaker identification techniques

D’Almeida, Frederico Quadros
Fonte: Universidade de Brasília Publicador: Universidade de Brasília
Tipo: Tese
POR
Relevância na Pesquisa
76.11%
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2009.; Os sistemas de identificação automática de locutor têm despertado crescente interesse científico atualmente. A aplicação de novas formas de modelagem da voz dos locutores tem melhorado de modo significativo a robustez desses sistemas a ruído, tornando sua aplicação prática viável em situações reais nas quais não se dispõe de áudio de boa qualidade. Contudo, essa crescente qualidade na modelagem e a consequente melhora no desempenho dos sistemas de identificação têm promovido, como efeito colateral, o aumento no custo computacional das tarefas de identificação. Em muitas situações, seja pelo grande número de locutores a serem testados, seja pela necessidade de uma resposta rápida do sistema, esse custo elevado torna proibitiva a aplicação efetiva das ferramentas de identificação automática de locutor. Neste trabalho são propostas, implementadas, avaliadas e validadas novas técnicas que buscam reduzir significativamente o custo computacional associado a tarefas de identificação automática de locutores sem, contudo, afetar o desempenho do sistema no que concerne às taxas de identificações corretas. Os métodos apresentados exploram características próprias dos modelos multicondicionais de mistura de gaussianas (GMM Gaussian Mixture Models)...