Página 1 dos resultados de 9 itens digitais encontrados em 0.003 segundos

Sensitive Giant Magnetoresistive-based Immunoassay for Multiplex Mycotoxin Detection

Mak, Andy C.; Osterfeld, Sebastian J.; Yu, Heng; Wang, Shan X.; Davis, Ronald W.; Jejelowo, Olufisayo A.; Pourmand, Nader
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.4%
Rapid and multiplexed measurement is vital in the detection of food-borne pathogens. While highly specific and sensitive, traditional immunochemical assays such as enzyme-linked immunosorbent assays (ELISAs) often require expensive read-out equipment (e.g. fluorescent labels) and lack the capability of multiplex detection. By combining the superior specificity of immunoassays with the sensitivity and simplicity of magnetic detection, we have developed a novel multiplex magnetic nanotag-based detection platform for mycotoxins that functions on a sub-picomolar concentration level. Unlike fluorescent labels, magnetic nanotags (MNTs) can be detected with inexpensive giant magnetoresistive (GMR) sensors such as spin-valve sensors. In the system presented here, each spin-valve sensor has an active area of 90 × 90 µm2, arranged in an 8×8 array. Sample is added to the antibody-immobilized sensor array prior to the addition of the biotinylated detection antibody. The sensor response is recorded in real time upon the addition of streptavidin-linked MNTs on the chip. Here we demonstrate the simultaneous detection of multiple mycotoxins (aflatoxins B1, zearalenone and HT-2) and show that a detection limit of 50 pg/mL can be achieved.

Magnetic Scanometric DNA Microarray Detection of Methyl Tertiary Butyl Ether Degrading Bacteria for Environmental Monitoring

Chan, Mei-Lin; Jaramillo, Gerardo; Hristova, Krassimira R.; Horsley, David A.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
16.41%
A magnetoresistive biosensing platform based on a single magnetic tunnel junction (MTJ) scanning probe and DNA microarrays labeled with magnetic particles has been developed to provide an inexpensive, sensitive and reliable detection of DNA. The biosensing platform was demonstrated on a DNA microarray assay for quantifying bacteria capable of degrading methyl tertiary-butyl ether (MTBE), where concentrations as low as 10 pM were detectable. Synthetic probe bacterial DNA was immobilized on a microarray glass slide surface, hybridized with the 48 base pair long biotinylated target DNA and subsequently incubated with streptavidin-coated 2.8 μm diameter magnetic particles. The biosensing platform then makes use of a micron-sized MTJ sensor that was raster scanned across a 3 mm by 5 mm glass slide area to capture the stray magnetic field from the tagged DNA and extract two dimensional magnetic field images of the microarray. The magnetic field output is then averaged over each 100 μm diameter DNA array spot to extract the magnetic spot intensity, analogous to the fluorescence spot intensity used in conventional optical scanners. The magnetic scanning result is compared with results from a commercial laser scanner and particle coverage optical counting to demonstrate the dynamic range and linear sensitivity of the biosensing platform as a potentially inexpensive...

Development of a Low-Cost Attitude and Heading Reference System Using a Three-Axis Rotating Platform

Lai, Ying-Chih; Jan, Shau-Shiun; Hsiao, Fei-Bin
Fonte: Molecular Diversity Preservation International (MDPI) Publicador: Molecular Diversity Preservation International (MDPI)
Tipo: Artigo de Revista Científica
Publicado em 24/03/2010 EN
Relevância na Pesquisa
26.36%
A development procedure for a low-cost attitude and heading reference system (AHRS) with a self-developed three-axis rotating platform has been proposed. The AHRS consists of one 3-axis accelerometer, three single-axis gyroscopes, and one 3-axis digital compass. Both the accelerometer and gyroscope triads are based on micro electro-mechanical system (MEMS) technology, and the digital compass is based on anisotropic-magnetoresistive (AMR) technology. The calibrations for each sensor triad are readily accomplished by using the scalar calibration and the least squares methods. The platform is suitable for the calibration and validation of the low-cost AHRS and it is affordable for most laboratories. With the calibrated parameters and data fusion algorithm for the orientation estimation, the self-developed AHRS demonstrates the capabilities of compensating for the sensor errors and outputting the estimated orientation in real-time. The validation results show that the estimated orientations of the developed AHRS are within the acceptable region. This verifies the practicability of the proposed development procedure.

A Portable and Autonomous Magnetic Detection Platform for Biosensing

Germano, José; Martins, Verónica C.; Cardoso, Filipe A.; Almeida, Teresa M.; Sousa, Leonel; Freitas, Paulo P.; Piedade, Moisés S.
Fonte: Molecular Diversity Preservation International (MDPI) Publicador: Molecular Diversity Preservation International (MDPI)
Tipo: Artigo de Revista Científica
Publicado em 27/05/2009 EN
Relevância na Pesquisa
26.44%
This paper presents a prototype of a platform for biomolecular recognition detection. The system is based on a magnetoresistive biochip that performs biorecognition assays by detecting magnetically tagged targets. All the electronic circuitry for addressing, driving and reading out signals from spin-valve or magnetic tunnel junctions sensors is implemented using off-the-shelf components. Taking advantage of digital signal processing techniques, the acquired signals are processed in real time and transmitted to a digital analyzer that enables the user to control and follow the experiment through a graphical user interface. The developed platform is portable and capable of operating autonomously for nearly eight hours. Experimental results show that the noise level of the described platform is one order of magnitude lower than the one presented by the previously used measurement set-up. Experimental results also show that this device is able to detect magnetic nanoparticles with a diameter of 250 nm at a concentration of about 40 fM. Finally, the biomolecular recognition detection capabilities of the platform are demonstrated by performing a hybridization assay using complementary and non-complementary probes and a magnetically tagged 20mer single stranded DNA target.

Portable Biomarker Detection with Magnetic Nanotags

Hall, Drew A.; Wang, Shan X.; Murmann, Boris; Gaster, Richard S.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 03/08/2010 EN
Relevância na Pesquisa
16.36%
This paper presents a hand-held, portable biosensor platform for quantitative biomarker measurement. By combining magnetic nanoparticle (MNP) tags with giant magnetoresistive (GMR) spin-valve sensors, the hand-held platform achieves highly sensitive (picomolar) and specific biomarker detection in less than 20 minutes. The rapid analysis and potential low cost make this technology ideal for point-of-care (POC) diagnostics. Furthermore, this platform is able to detect multiple biomarkers simultaneously in a single assay, creating a promising diagnostic tool for a vast number of applications.

A Magneto-Nanosensor Immunoassay for Sensitive Detection of Aspergillus Fumigatus Allergen Asp f 1

Kim, Dokyoon; Wang, Shan X.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/11/2012 EN
Relevância na Pesquisa
16.12%
We report a magneto-nanosensor biochip for fungal detection. The chip is made of arrays of giant magnetoresistive (GMR) spin-valve sensors, and is able to detect protein biomarkers at low concentrations in solutions. As a demonstration, a standard curve for fungal pathogen Asp f 1 was obtained by measuring signals from various concentrations of Asp f 1 spiked in PBS solutions, indicating a detection limit of ~100 pg/ml. Five positive and negative Asp f 1 solution samples were discriminated correctly in blind experiments. Our data suggest that the magneto-nanosensor biochips are very promising as sensitive diagnostic devices for fungal pathogens. Given the generality of the detection scheme used in the magneto-nanosensor, we anticipate that the platform will be very useful for the detection of many types of biomarkers.

Modeling and experiments of magneto-nanosensors for diagnostics of radiation exposure and cancer

Kim, Dokyoon; Lee, Jung-Rok; Shen, Eric; Wang, Shan X.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /08/2013 EN
Relevância na Pesquisa
16.12%
We present a resistive network model, protein assay data, and outlook of the giant magnetoresistive (GMR) spin-valve magneto-nanosensor platform ideal for multiplexed detection of protein biomarkers in solutions. The magneto-nanosensors are designed to have optimal performance considering several factors such as sensor dimension, shape anisotropy, and magnetic nanoparticle tags. The resistive network model indicates that thinner spin-valve sensors with narrower width lead to higher signals from magnetic nanoparticle tags. Standard curves and real-time measurements showed a sensitivity of ~10 pM for phosphorylated-structural maintenance of chromosome 1 (phosphor-SMC1), ~53 fM for granulocyte colony stimulation factor (GCSF), and ~460 fM for interleukin-6 (IL6), which are among the representative biomarkers for radiation exposure and cancer.

Lab-on-Chip Cytometry Based on Magnetoresistive Sensors for Bacteria Detection in Milk

Fernandes, Ana C.; Duarte, Carla M.; Cardoso, Filipe A.; Bexiga, Ricardo.; Cardoso, Susana.; Freitas, Paulo P.
Fonte: MDPI Publicador: MDPI
Tipo: Artigo de Revista Científica
Publicado em 21/08/2014 EN
Relevância na Pesquisa
26.55%
Flow cytometers have been optimized for use in portable platforms, where cell separation, identification and counting can be achieved in a compact and modular format. This feature can be combined with magnetic detection, where magnetoresistive sensors can be integrated within microfluidic channels to detect magnetically labelled cells. This work describes a platform for in-flow detection of magnetically labelled cells with a magneto-resistive based cell cytometer. In particular, we present an example for the validation of the platform as a magnetic counter that identifies and quantifies Streptococcus agalactiae in milk.

Nanocomposite polymer beads for cell detection

Jacinto, João Paulo Palma
Fonte: Universidade Nova de Lisboa Publicador: Universidade Nova de Lisboa
Tipo: Dissertação de Mestrado
Publicado em //2015 ENG
Relevância na Pesquisa
46.82%
Circulating tumor cells (CTCs) may induce metastases when detached from the primary tumor. The numbers of these cells in blood offers a valuable prognostic indication. Magnetoresistive sensing is an attractive option for CTC counting. In this technique, cells are labeled with nancomposite polymer beads that provide the magnetic signal. Bead properties such as size and magnetic content must be optimized in order to be used as a detection tool in a magnetoresistive platform. Another important component of the platform is the magnet required for proper sensing. Both components are addressed in this work. Nanocomposite polymer beads were produced by nano-emulsion and membrane emulsification. Formulations of the oil phase comprising a mixture of aromatic monomers and iron oxide were employed. The effect of emulsifier (surfactant) concentration on bead size was studied. Formulations of polydimethilsiloxane (PDMS) with different viscosities were also prepared with nano-emulsion method resulting in colloidal beads. Polycaprolactone (PCL) beads were also synthetized by the membrane emulsification method. The beads were characterized by different techiques such as dynamic light scattering (DLS), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Additionally...