Página 1 dos resultados de 76 itens digitais encontrados em 0.031 segundos

The generalized inverse Weibull distribution

GUSMAO, Felipe R. S. de; ORTEGA, Edwin M. M.; CORDEIRO, Gauss M.
Fonte: SPRINGER Publicador: SPRINGER
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
65.76%
The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability and biological studies. A three-parameter generalized inverse Weibull distribution with decreasing and unimodal failure rate is introduced and studied. We provide a comprehensive treatment of the mathematical properties of the new distribution including expressions for the moment generating function and the rth generalized moment. The mixture model of two generalized inverse Weibull distributions is investigated. The identifiability property of the mixture model is demonstrated. For the first time, we propose a location-scale regression model based on the log-generalized inverse Weibull distribution for modeling lifetime data. In addition, we develop some diagnostic tools for sensitivity analysis. Two applications of real data are given to illustrate the potentiality of the proposed regression model.

A log-extended Weibull regression model

SILVA, Giovana O.; ORTEGA, Edwin M. M.; CORDEIRO, Gauss M.
Fonte: ELSEVIER SCIENCE BV Publicador: ELSEVIER SCIENCE BV
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
65.74%
A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models. (C) 2009 Elsevier B.V. All rights reserved.; CNPq; CAPES

A bivariate regression model for matched paired survival data: local influence and residual analysis

BARRIGA, Gladys D. C.; LOUZADA-NETO, Francisco; ORTEGA, Edwin M. M.; CANCHO, Vicente G.
Fonte: SPRINGER HEIDELBERG Publicador: SPRINGER HEIDELBERG
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
45.71%
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

The log-exponentiated Weibull regression model for interval-censored data

HASHIMOTO, Elizabeth M.; ORTEGA, Edwin M. M.; CANCHO, Vicente G.; CORDEIRO, Gauss M.
Fonte: ELSEVIER SCIENCE BV Publicador: ELSEVIER SCIENCE BV
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
65.78%
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.; CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Log-Burr XII regression models with censored data

SILVA, Giovana Oliveira; ORTEGA, Edwin M. M.; CANCHO, Vicente G.; BARRETO, Mauricio Lima
Fonte: ELSEVIER SCIENCE BV Publicador: ELSEVIER SCIENCE BV
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
55.77%
In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.

A log-linear regression model for the beta-Birnbaum-Saunders distribution with censored data

Ortega, Edwin M. M.; Cordeiro, Gauss M.; Lemonte, Artur J.
Fonte: ELSEVIER SCIENCE BV; AMSTERDAM Publicador: ELSEVIER SCIENCE BV; AMSTERDAM
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
85.77%
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.; CNPq; CNPq; FAPESP (Brazil); FAPESP (Brazil)

Modelos de regressão quando a função de taxa de falha não é monótona e o modelo probabilístico beta Weibull modificada; Regression models when the failure rate function is no monotone and the new beta modified Weibull model

Silva, Giovana Oliveira
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 05/02/2009 PT
Relevância na Pesquisa
55.81%
Em aplicações na área de análise de sobrevivência, é freqüente a ocorrência de função de taxa de falha em forma de U ou unimodal, isto e, funções não-monótonas. Os modelos de regressão comumente usados para dados de sobrevivência são log-Weibull, função de taxa de falha monótona, e log-logística, função de taxa de falha decrescente ou unimodal. Um dos objetivos deste trabalho e propor os modelos de regressão, em forma de locação e escala, log-Weibull estendida que apresenta função de taxa de falha em forma de U e log- Burr XII que tem como caso particular o modelo de regressão log-logística. Considerando dados censurados, foram utilizados três métodos para estimação dos parâmetros, a saber, máxima verossimilhança, bayesiana e jackkinife. Para esses modelos foram calculadas algumas medidas de diagnósticos de influência local e global. Adicionalmente, desenvolveu-se uma análise de resíduos baseada no resíduo tipo martingale. Para diferentes parâmetros taxados, tamanhos de amostra e porcentagens de censuras, várias simulações foram feitas para avaliar a distribuição empírica do resíduo tipo martingale e compará-la com a distribuição normal padrão. Esses estudos sugerem que a distribuição empírica do resíduo tipo martingale para o modelo de regressão log-Weibull estendida com dados censurados aproxima-se de uma distribuição normal padrão quando comparados com outros resíduos considerados neste estudo. Para o modelo de regressão log-Burr XII...

Estimação e diagnóstico na disribuição Weibull-Binomial-Negativa em análise de sobrevivência; Estimation and diagnosis for the Weibull-Negative-Binomial distribution in survival anaçysis

Yiqi, Bao
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 28/05/2012 PT
Relevância na Pesquisa
45.62%
Neste trabalho propomos a distribuição Weibull-Binomial-Negativa (WBN) considerando uma estrutura de ativação latente para explicar a ocorrência do evento de interesse, em que o número de causas competitivas é modelado pela distribuição Binomial Negativa, e os tempos não observados devido às causas seguem a distribuição Weibull. Em geral, as causas competitivas podem ter diferentes mecanismos de ativação, sendo assim os casos de primeira ativação, última ativação e ativação aleatória foram considerados no estudo. Desse modo o modelo proposto inclui uma ampla distribuição, tais como Weibull-Geométrico (WG) e Exponencial-Poisson Complementar (EPC), introduzidas por Barreto-Souza et al. (2011) e G. et al. (2011), respectivamente. Baseando-nos na mesma estrutura, consideramos o modelo de regressão locação-escala baseado na distribuição proposta (WBN) e o modelo para dados de sobrevivência com fração de cura. Os principais objetivos deste trabalho é estudar as propriedades matemáticas dos modelos propostos e desenvolver procedimentos de inferências desde uma perspectiva clássica e Bayesiana. Além disso, as medidas de diagnóstico Bayesiana baseadas na 'psi'-divergência (Peng & Dey, 1995; Weiss, 1996)...

Modelo de regressão gama-G em análise de sobrevivência ; Gama-G regression model in survival analysis

Hashimoto, Elizabeth Mie
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 15/03/2013 PT
Relevância na Pesquisa
65.69%
Dados de tempo de falha são caracterizados pela presença de censuras, que são observações que não foram acompanhadas até a ocorrência de um evento de interesse. Para estudar o comportamento de dados com essa natureza, distribuições de probabilidade são utilizadas. Além disso, é comum se ter uma ou mais variáveis explicativas associadas aos tempos de falha. Dessa forma, o objetivo geral do presente trabalho é propor duas novas distribuições utilizando a função geradora de distribuições gama, no contexto de modelos de regressão em análise de sobrevivência. Essa função possui um parâmetro de forma que permite criar famílias paramétricas de distribuições que sejam flexíveis para capturar uma ampla variedade de comportamentos simétricos e assimétricos. Assim, a distribuição Weibull e a distribuição log-logística foram modificadas, dando origem a duas novas distribuições de probabilidade, denominadas de gama-Weibull e gama-log-logística, respectivamente. Consequentemente, os modelos de regressão locação-escala, de longa-duração e com efeito aleatório foram estudados, considerando as novas distribuições de probabilidade. Para cada um dos modelos propostos, foi utilizado o método da máxima verossimilhança para estimar os parâmetros e algumas medidas de diagnóstico de influência global e local foram calculadas para encontrar possíveis pontos influentes. No entanto...

A distribuição beta semi-normal generalizada geométrica; The beta generalized half-normal geométric distribution

Ramires, Thiago Gentil
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 21/06/2013 PT
Relevância na Pesquisa
45.57%
Com o avanço tecnológico aprimorado, diferentes comportamentos do tempo de vida vem sendo estudados, e com isso é necessário a criação de novos modelos, muitas vezes mais complexos, para melhor ajuste e inferência sobre a população em estudo. A distribuição beta semi-normal generalizada é útil para modelagem de tempos de vida, e com isso propomos neste trabalho uma distribuição mais ampla chamada distribuição beta semi-normal generalizada geométrica, cuja função de risco pode assumir as formas crescente, decrescente, forma de banheira ou modal. A função densidade da nova distribuição é escrita como uma combinação linear da função densidade da distribuição beta semi-normal generalizada, sendo assim, algumas importantes propriedades da nova distribuição foram obtidas, como: momentos, assimetria, curtose, função geradora de momentos, desvios médios, função quantíl e curvas de Lorenz e de Bonferroni. Para a estimação dos parâmetros, é utilizado o método de máxima verossimilhança. Também foi proposto no trabalho, o novo modelo de regressão baseado na distribuição beta semi-normal generalizada geométrica, os quais podem ser muito úteis em análise de dados reais por serem mais flexíveis.; Due to the technological improved advances...

Automatic selection of indicators in a fully saturated regression

Santos, Carlos; Hendry, David F.; Johansen, Soren
Fonte: Springer Publicador: Springer
Tipo: Artigo de Revista Científica
Publicado em //2008 ENG
Relevância na Pesquisa
45.72%
We consider selecting a regression model, using a variant of the generalto- specific algorithm in PcGets, when there are more variables than observations. We look at the special case where the variables are single impulse dummies, one defined for each observation. We show that this setting is unproblematic if tackled appropriately, and obtain the asymptotic distribution of the mean and variance in a location-scale model, under the null that no impulses matter. Monte Carlo simulations confirm the null distributions and suggest extensions to highly non-normal cases

A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data*

Hedeker, Donald; Demirtas, Hakan; Mermelstein, Robin J.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em //2009 EN
Relevância na Pesquisa
45.8%
Mixed-effects logistic regression models are described for analysis of longitudinal ordinal outcomes, where observations are observed clustered within subjects. Random effects are included in the model to account for the correlation of the clustered observations. Typically, the error variance and the variance of the random effects are considered to be homogeneous. These variance terms characterize the within-subjects (i.e., error variance) and between-subjects (i.e., random-effects variance) variation in the data. In this article, we describe how covariates can influence these variances, and also extend the standard logistic mixed model by adding a subject-level random effect to the within-subject variance specification. This permits subjects to have influence on the mean, or location, and variability, or (square of the) scale, of their responses. Additionally, we allow the random effects to be correlated. We illustrate application of these models for ordinal data using Ecological Momentary Assessment (EMA) data, or intensive longitudinal data, from an adolescent smoking study. These mixed-effects ordinal location scale models have useful applications in mental health research where outcomes are often ordinal and there is interest in subject heterogeneity...

Joint modelling of location and scale parameters of the t distribution

Taylor, J.; Verbyla, A.
Fonte: Arnold Publicador: Arnold
Tipo: Artigo de Revista Científica
Publicado em //2004 EN
Relevância na Pesquisa
35.84%
Joint modelling of location and scale parameters has generally been confined to exponential families. In this paper the location and scale parameters of the t distribution are allowed to depend on covariates. The closed form of the likelihood allows inference to proceed in a similar fashion to the Gaussian location and scale model and provides a framework for a simple scoring algorithm to estimate the parameters. The algorithm includes a procedure to estimate the degrees of freedom parameter of the t distribution. Homogeneity and asymptotic tests are discussed and a methodology is derived to detect heteroscedasticity when the response is t distributed. Simulations reveal considerable bias in the estimates of the degrees of freedom parameter and only minor bias in the estimated fixed effects associated with the scale parameter. In comparison, the estimated location effects are well behaved. To illustrate the joint modelling of location and scale parameters of the t distribution the methodology is applied to two data sets.

Scale parameter modelling of the t-distribution

Taylor, Julian
Fonte: Universidade de Adelaide Publicador: Universidade de Adelaide
Tipo: Tese de Doutorado Formato: 193510 bytes; 1143605 bytes; 95957 bytes; application/pdf; application/pdf; application/pdf
Publicado em //2005 EN
Relevância na Pesquisa
45.94%
This thesis considers location and scale parameter modelling of the heteroscedastic t-distribution. This new distribution is an extension of the heteroscedastic Gaussian and provides robust analysis in the presence of outliers as well accommodates possible heteroscedasticity by flexibly modelling the scale parameter using covariates existing in the data. To motivate components of work in this thesis the Gaussian linear mixed model is reviewed. The mixed model equations are derived for the location fixed and random effects and this model is then used to introduce Restricted Maximum Likelihood ( REML ). From this an algorithmic scheme to estimate the scale parameters is developed. A review of location and scale parameter modelling of the heteroscedastic Gaussian distribution is presented. In this thesis, the scale parameters are a restricted to be a function of covariates existing in the data. Maximum Likelihood ( ML ) and REML estimation of the location and scale parameters is derived as well as an efficient computational algorithm and software are presented. The Gaussian model is then extended by considering the heteroscedastic t distribution. Initially, the heteroscedastic t is restricted to known degrees of freedom. Scoring equations for the location and scale parameters are derived and their intimate connection to the prediction of the random scale effects is discussed. Tools for detecting and testing heteroscedasticity are also derived and a computational algorithm is presented. A mini software package " hett " using this algorithm is also discussed. To derive a REML equivalent for the heteroscedastic t asymptotic likelihood theory is discussed. In this thesis an integral approximation...

The optimal spatial scale for the analysis of elephant seal foraging areas as determined by geo-location in relation to sea surface temperatures

Bradshaw, C.; Hindell, M.; Michael, K.; Sumner, M.
Fonte: Academic Press Ltd Elsevier Science Ltd Publicador: Academic Press Ltd Elsevier Science Ltd
Tipo: Artigo de Revista Científica
Publicado em //2002 EN
Relevância na Pesquisa
45.84%
There is increasing emphasis put on the correlation of marine predator behaviour and foraging performance with the bio-physical properties of the ocean environment. However, spatial error in the estimated position of animals and the accuracy of interpolated, physical oceanographic data require the assessment of the appropriate spatial resolution at which to assess relationships. We recorded surface temperature data from 17 archival tags attached to female southern elephant seals at Macquarie Island during the post-lactation foraging trip of 1999–2000. Archival-tag temperature data were associated with twice-daily, at-sea positions derived from light levels (i.e., "geo-location"). We compared these surface temperatures and their associated spatial error to satellite-derived Multi-Channel Sea Surface Temperature (MCSST) data to assess at what spatial scale the agreement between the two data sources was highest. We considered scales from 50x50 km through to 500x500 km grid cells, at 50x50 km increments. Averaged over all individuals and assessed in fortnightly time periods, we found a peak in agreement between the mean surface temperature recorded by the archival tags and the MCSST data at 350x350 km grid cells (122 500 km2). We used logistic regression model selection to examine the effects of spatial scale...

Bayesian predictive inference for multivariate simple regression model with matrix-T error

Rahman, Azizur
Fonte: Pioneer Scientific Publisher Publicador: Pioneer Scientific Publisher
Tipo: Artigo de Revista Científica
Publicado em //2011
Relevância na Pesquisa
55.72%
The Bayesian methodology is used in this paper to derive the prediction distribution of future responses matrix for multivariate simple linear model with matrix-T error. Results reveal that the prediction distribution of future responses matrix is a matrix-T distribution with appropriate location, scale and shape parameters. The prediction distribution depends on the realized responses only through the sample regression matrix and the sample residual sum of squares and products matrix. The study model is robust and the Bayesian method is competitive with other statistical methods in the field of predictive inference. Some applications of predictive inference have also been illustrated.; http://www.pspchv.com/content_1_PJTAS_2.html; Azizur Rahman

Régression logistique bayésienne : comparaison de densités a priori

Deschênes, Alexandre
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Thèse ou Mémoire numérique / Electronic Thesis or Dissertation
FR
Relevância na Pesquisa
35.83%
La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3...

A flexible bivariate location-scale finite mixture approach to economic growth

Marcelletti, Alessandra; Maruotti, Antonello; Trovato, Giovanni
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 17/10/2014
Relevância na Pesquisa
45.7%
We introduce a multivariate multidimensional mixed-effects regression model in a finite mixture framework. We relax the usual unidimensionality assumption on the random effects multivariate distribution. Thus, we introduce a multidimensional multivariate discrete distribution for the random terms, with a possibly different number of support points in each univariate profile, allowing for a full association structure. Our approach is motivated by the analysis of economic growth. Accordingly, we define an extended version of the augmented Solow model. Indeed, we allow all model parameters, and not only the mean, to vary according to a regression model. Moreover, we argue that countries do not follow the same growth process, and that a mixture-based approach can provide a natural framework for the detection of similar growth patterns. Our empirical findings provide evidence of heterogenous behaviors and suggest the need of a flexible approach to properly reflect the heterogeneity in the data. We further test the behavior of the proposed approach via a simulation study, considering several factors such as the number of observed units, times and levels of heterogeneity in the data.

Weighted quantile regression for longitudinal data

Xiaoming, Lu; Zhaozhi, Fan
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 10/09/2013
Relevância na Pesquisa
35.72%
Quantile regression is a powerful statistical methodology that complements the classical linear regression by examining how covariates influence the location, scale, and shape of the entire response distribution and offering a global view of the statistical landscape. In this paper we propose a new quantile regression model for longitudinal data. The proposed approach incorporates the correlation structure between repeated measures to enhance the efficiency of the inference. In order to use the Newton-Raphson iteration method to obtain convergent estimates, the estimating functions are redefined as smoothed functions which are differentiable with respect to regression parameters. Our proposed method for quantile regression provides consistent estimates with asymptotically normal distributions. Simulation studies are carried out to evaluate the performance of the proposed method. As an illustration, the proposed method was applied to a real-life data that contains self-reported labor pain for women in two groups.; Comment: 22 pages, 3 figures

Distribuição gama generalizada geométrica estendida; The extended generalized gamma geometric distribution

Bortolini, Juliano
Fonte: Universidade Federal de Lavras; Programa de Pós-Graduação em Estatística e Experimentação Agropecuária; UFLA; brasil; Departamento de Ciências Exatas Publicador: Universidade Federal de Lavras; Programa de Pós-Graduação em Estatística e Experimentação Agropecuária; UFLA; brasil; Departamento de Ciências Exatas
Tipo: Tese de Doutorado
Publicado em 17/12/2015 POR
Relevância na Pesquisa
65.75%
New probability distributions are proposed in order to get better fit to the complex data such as censored, skewed and bimodal. In this perspective, this work proposed new more flexible models for survival analysis. The first model proposed is the extended generalized gamma geometric distribution of five parameters, which includes well-known lifetime special sub-models such as the generalized gamma. We provided a mathematical treatment of the new distribution including explicit expressions for moments, moment generating function, mean deviations, reliability and order statistics. Further, we developed an extension of this distribution by assuming that a shape parameter can take negative values. Additionally, we derived the log-transformed distribution and its regression model. The new regression model represents a parametric family of models that includes as sub-models some widely known regression models that can be applied to censored survival data. Finally, an application of the new models to real data showed that they could provide a better fit than other statistical models frequently used in lifetime data analysis.; Novas distribuições de probabilidade são propostas com o objetivo de obter melhores ajustes a dados que apresentem comportamentos mais complexos...