Página 1 dos resultados de 811 itens digitais encontrados em 0.003 segundos

Modelos de memória longa, GARCH e GARCH com memória longa para séries financeiras; Long memory, GARCH and long memory GARCH models for financial time series

Solda, Grazielle Yumi
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 10/04/2008 PT
Relevância na Pesquisa
37.51%
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (variância condicional) de séries temporais financeiras. O modelo ARFIMA é empregado para capturar o comportamento de memória longa observado na volatilidade de séries financeiras. Por sua vez, o modelo GARCH é utilizado para modelar a volatilidade variando no tempo destas séries. Finalmente, o modelo FIGARCH é utilizado para modelar a dinâmica dos retornos de séries temporais financeiras juntamente com sua volatilidade. Serão apresentados alguns estimadores para os parâmetros dos modelos estudados. Foram realizadas simulações dos três tipos de modelos com o objetivo de comparar o comportamento dos estimadores para diferentes valores dos parâmetros. Por fim, serão apresentadas aplicações em séries reais.; The goal of this project is to present and compare differents methods of modeling volatility (conditional variance) in financial time series. ARFIMA model is applied to capture long memory behavior of volatility in financial time series. GARCH model is used to model the temporal variation in financial volatility. Finally, FIGARCH model is used to model dynamic of financial time series returns as well as its volatility behavior. We present some estimators for the studied models. Estimators behavior of the three types of models for different parameters is assessed through a simulation study. At last...

Estimação indireta de modelos R-GARCH; Indirect inference of R-GARCH models

Sampaio, Jhames Matos
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 01/03/2012 PT
Relevância na Pesquisa
37.72%
Processos lineares não capturam a estrutura dos dados em finanças. Há uma variedade muito grande de modelos não lineares disponíveis na literatura. A classe de modelos ARCH (Autoregressive Conditional Heterokedastic) foi introduzida por Engle (1982) com o objetivo de estimar a variância da inflação. A idéia nesta classe é que os retornos sejam não correlacionados serialmente, mas a volatilidade (variância condicional) dependa de retornos passados. A classe de modelos GARCH (Generalized Autoregressive Conditional Heterokedastic) sugerida por Bollerslev (1986, 1987, 1988) pode ser usada para descrever a volatilidade com menos parâmetros que um modelo ARCH. Modelos da classe GARCH são processos estocásticos não lineares, suas distribuições tem cauda pesada com variância condicional dependente do tempo e modelam agrupamento de volatilidade. Apesar da razoável descrição, a forma como os modelos acima foram construídos apresentaram algumas limitações no que se refere ao peso das caudas em suas distribuições não condicionais. Muitos estudos em dados financeiros apontam para caudas com peso considerável. Modelos R-GARCH (Randomized Generalized Autoregressive Conditional Heterokedastic) foram propostos por Nowicka (1998) e incluem os modelos ARCH e GARCH possibilitando o uso de inovações estáveis além da conhecida distribuição normal. Estas permitem captar melhor a propriedade de cauda pesada. Como a função de autocovariância não existe para tais processos introduz-se novas medida de dependência. Métodos de estimação e análises empíricas da classe R-GARCH...

Modelagem de volatilidade via modelos GARCH com erros assimétricos: abordagem Bayesiana; Volatility modeling through GARCH models with asymetric errors: Bayesian approach

Fioruci, José Augusto
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 12/06/2012 PT
Relevância na Pesquisa
37.55%
A modelagem da volatilidade desempenha um papel fundamental em Econometria. Nesta dissertação são estudados a generalização dos modelos autorregressivos condicionalmente heterocedásticos conhecidos como GARCH e sua principal generalização multivariada, os modelos DCC-GARCH (Dynamic Condicional Correlation GARCH). Para os erros desses modelos são consideradas distribuições de probabilidade possivelmente assimétricas e leptocúrticas, sendo essas parametrizadas em função da assimetria e do peso nas caudas, necessitando assim de estimar esses parâmetros adicionais aos modelos. A estimação dos parâmetros dos modelos é feita sob a abordagem Bayesiana e devido às complexidades destes modelos, métodos computacionais baseados em simulações de Monte Carlo via Cadeias de Markov (MCMC) são utilizados. Para obter maior eficiência computacional os algoritmos de simulação da distribuição a posteriori dos parâmetros são implementados em linguagem de baixo nível. Por fim, a proposta de modelagem e estimação é exemplificada com dois conjuntos de dados reais; The modeling of volatility plays a fundamental role in Econometrics. In this dissertation are studied the generalization of known autoregressive conditionally heteroscedastic (GARCH) models and its main principal multivariate generalization...

Modelos black-litterman e GARCH ortogonal para uma carteira de títulos do tesouro nacional; Black-Litterman and ortogonal GARCH models for a portfolio of bonds issued by the National Treasury

Lobarinhas, Roberto Beier
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 02/03/2012 PT
Relevância na Pesquisa
37.68%
Uma grande dificuldade da gestão financeira é conseguir associar métodos quantitativos às formas tradicionais de gestão, em um único arranjo. O estilo tradicional de gestão tende a não crer, na devida medida, que métodos quantitativos sejam capazes de captar toda sua visão e experiência, ao passo que analistas quantitativos tendem a subestimar a importância do enfoque tradicional, gerando flagrante desarmonia e ineficiência na análise de risco. Um modelo que se propõe a diminuir a distância entre essas visões é o modelo Black-Litterman. Mais especificamente, propõe-se a diminuir os problemas enfrentados na aplicação da teoria moderna de carteiras e, em particular, os decorrentes da aplicação do modelo de Markowitz. O modelo de Markowitz constitui a base da teoria de carteiras há mais de meio século, desde a publicação do artigo Portfolio Selection [Mar52], entretanto, apesar do papel de destaque da abordagem média-variância para o meio acadêmico, várias dificuldades aparecem quando se tenta utilizá-lo na prática, e talvez, por esta razão, seu impacto no mundo dos investimentos tem sido bastante limitado. Apesar das desvantagens na utilização do modelo de média-variância de Markowitz, a idéia de maximizar o retorno...

Modelo GARCH com mudança de regime markoviano para séries financeiras; Markov regime switching GARCH model for financial series

Rojas Duran, William Gonzalo
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 24/03/2014 PT
Relevância na Pesquisa
37.63%
Neste trabalho analisaremos a utilização dos modelos de mudança de regime markoviano para a variância condicional. Estes modelos podem estimar de maneira fácil e inteligente a variância condicional não observada em função da variância anterior e do regime. Isso porque, é razoável ter coeficientes variando no tempo dependendo do regime correspondentes à persistência da variância (variância anterior) e às inovações. A noção de que uma série econômica possa ter alguma variação na sua estrutura é antiga para os economistas. Marcucci (2005) comparou diferentes modelos com e sem mudança de regime em termos de sua capacidade para descrever e predizer a volatilidade do mercado de valores dos EUA. O trabalho de Hamilton (1989) foi uns dos mais importantes para o desenvolvimento de modelos com mudança de regime. Inicialmente mostrou que a série do PIB dos EUA pode ser modelada como um processo que tem duas formas diferentes, uma na qual a economia encontra-se em crescimento e a outra durante a recessão. O câmbio de uma fase para outra da economia pode seguir uma cadeia de Markov de primeira ordem. Utilizamos as séries de índice Bovespa e S&P500 entre janeiro de 2003 e abril de 2012 e ajustamos o modelo GARCH(1...

Estudo da volatilidade da série de preços da soja por meio de modelos GARCH e modelos ARFIMA; Volatility of soybean price range using GARCH models and ARFIMA models

Avancini, Gabriel Tambarussi
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 20/02/2015 PT
Relevância na Pesquisa
37.41%
O objetivo deste trabalho foi estudar o comportamento da volatilidade do preço da soja negociada em contratos futuros na BM&FBOVESPA (série SFI). O estudo foi realizado por meio da comparação entre duas abordagens: na primeira, foi utilizada a série de retornos absolutos da série em questão para representar a volatilidade da mesma, que se mostrou persistente ao longo do tempo, comprovando o fato de que a série possui o comportamento de memória longa. Por ter apresentado tal comportamento, fez-se necessária a utilização de modelos ARFIMA ("Autorregressivos Fracionários Integrados de Médias Móveis") estes, que são capazes de capturar de maneira efetiva tal comportamento. Ainda dentro desta abordagem, os modelos foram estimados de duas maneiras distintas: a primeira, em que todos os parâmetros foram estimados simultaneamente e a segunda, em que primeiramente foi estimado o parâmetro de memória longa, diferenciada a série e, posteriormente, foram ajustados os modelos ARIMA nos dados diferenciados. Por fim, a segunda abordagem utilizada no trabalho é a mais comum em pesquisas acadêmicas: foi realizada a estimação dos modelos GARCH ("Autorregressivos Generalizados de Heteroscedasticidade Condicional") diretamente na série de retornos. Neste estudo...

Modelos de previsão de volatilidade : uma aplicação do modelo GARCH a taxas de câmbio

Miguel Neto, Fernando Antonio
Fonte: Fundação Getúlio Vargas Publicador: Fundação Getúlio Vargas
Tipo: Dissertação
PT_BR
Relevância na Pesquisa
37.41%
Com o objetivo de mostrar uma aplicação dos modelos da família GARCH a taxas de câmbio, foram utilizadas técnicas estatísticas englobando análise multivariada de componentes principais e análise de séries temporais com modelagem de média e variância (volatilidade), primeiro e segundo momentos respectivamente. A utilização de análise de componentes principais auxilia na redução da dimensão dos dados levando a estimação de um menor número de modelos, sem contudo perder informação do conjunto original desses dados. Já o uso dos modelos GARCH justifica-se pela presença de heterocedasticidade na variância dos retornos das séries de taxas de câmbio. Com base nos modelos estimados foram simuladas novas séries diárias, via método de Monte Carlo (MC), as quais serviram de base para a estimativa de intervalos de confiança para cenários futuros de taxas de câmbio. Para a aplicação proposta foram selecionadas taxas de câmbio com maior market share de acordo com estudo do BIS, divulgado a cada três anos.; In order to show an application of GARCH models to exchange rates, we used statistical techniques such as principal component analysis and multivariate time series analysis to model mean and variance (volatility). The use of principal component analysis helps to reduce the dataset size and lead to fit fewer models...

Dois modelos de controle de risco: o modelo Nelson-Siegel dinâmico e o cálculo de VaR por modelos GARCH

Daitx, Fernando
Fonte: Fundação Getúlio Vargas Publicador: Fundação Getúlio Vargas
Tipo: Dissertação
PT_BR
Relevância na Pesquisa
37.47%
A presente dissertação tem como objetivo apresentar dois importantes modelos usados na análise de risco. Essa análise culmina em uma aplicação empírica para cada um deles. Apresenta-se primeiro o modelo Nelson-Siegel dinâmico, que estima a curva de juros usando um modelo paramétrico exponencial parcimonioso. É citada a referência criadora dessa abordagem, que é Nelson & Siegel (1987), passa-se pela apresentação da mais importante abordagem moderna que é a de Diebold & Li (2006), que é quem cria a abordagem dinâmica do modelo Nelson-Siegel, e que é inspiradora de diversas extensões. Muitas dessas extensões também são apresentadas aqui. Na parte empírica, usando dados da taxa a termo americana de Janeiro de 2004 a Março de 2015, estimam-se os modelos Nelson-Siegel dinâmico e de Svensson e comparam-se os resultados numa janela móvel de 12 meses e comparamos seus desempenhos com aqueles de um passeio aleatório. Em seguida, são apresentados os modelos ARCH e GARCH, citando as obras originais de Engle (1982) e Bolleslev (1986) respectivamente, discutem-se características destes modelos e apresentam-se algumas extensões ao modelo GARCH, incluindo aí alguns modelos GARCH multivariados. Passa-se então por uma rápida apresentação do conceito de VaR (Value at Risk)...

Usando redes neurais para estimação da volatilidade : redes neurais e modelo híbrido GARCH aumentado por redes neurais

Oliveira, André Barbosa
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
37.51%
As séries temporais financeiras são marcadas por comportamentos complexos e não-lineares. No mercado financeiro, além da trajetória das cotações, a sua variabilidade, representada pela volatilidade, consiste em importante informação para o mercado. Redes neurais são modelos não lineares flexíveis com capacidade de descrever funções de distintas classes, possuindo a propriedade de aproximadores universais. Este trabalho busca empregar redes neurais, especificamente Perceptron de múltiplas camadas com uma única camada escondida alimentada para frente (Feedforward Multilayer Perceptron), para a previsão da volatilidade. Mais ainda, é proposto um modelo híbrido que combina o modelo GARCH e redes neurais. Os modelos GARCH e redes neurais são estimados para duas séries financeiras: Índice S&P500 e cotações do petróleo tipo Brent. Os resultados indicam que a volatilidade aproximada por redes neurais é muito semelhante as estimativas dos tradicionais modelos GARCH. Suas diferenças são mais qualitativas, na forma de resposta da volatilidade estimada a choques de maior magnitude e sua suavidade, do que quantitativas, apresentando critérios de erros de previsão em relação a uma medida de volatilidade benchmark muito próximos.; The financial time series are characterized by complex and non-linear behaviors. In addition to the financial market trend in prices their variability or volatility...

Avaliação da habilidade preditiva entre modelos Garch multivariados : uma análise baseada no critério Model Confidence Set

Borges, Bruna Kasprzak
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
37.33%
Esta dissertação analisa a questão da seleção de modelos GARCH multivariados em termos da perfomance de previsão da matriz de covariância condicional. A aplicação empírica é realizada com 7 retornos de índices de ações envolvendo um conjunto de 34 especificações de modelos para os quais computamos as previsões da variância condicional um passo a frente para uma amostra com 60 observações para cada especificação dos modelos GARCH multivariados. A comparação entre os modelos é baseada no procedimento Model Confidence Set (MCS) avaliado através de duas funções perdas robustas a proxies de volatilidade imperfeitas. O MCS é um procedimento que permite comparar vários modelos simultaneamente em termos de sua habilidade preditiva e determinar um conjunto de modelos estatisticamente semelhantes em termos de previsão, dado um nível de confiança.; This paper considers the question of the selection of multivariate GARCH models in terms of covariance matrix forecasting. In the empirical application we consider 7 series of returns and compare a set of 34 model specifications based on one-step-ahead conditional variance forecasts over a sample with 60 observations. The comparison between models is performed with the Model Confidence Set (MCS) procedure evaluated using two loss functions that are robust against imperfect volatility proxies. The MCS is a procedure that allows both a multiple model comparison in terms of forecasting accuracy and the determination of a model set composed of statistically equivalent models...

GARCH PROOF OF CONCEPT _ UPDATED 18 DEC 2008; Forecasting

Datta, Shoumen
Fonte: MIT - Massachusetts Institute of Technology Publicador: MIT - Massachusetts Institute of Technology
Tipo: Parte de Livro
EN
Relevância na Pesquisa
37.41%
Proof that application of GARCH technique offers potential for profitability. Forecasting is an underestimated field of research in supply chain management. Recently advanced methods are coming into use. Initial results presented in this chapter are encouraging, but may require changes in policies for collaboration and transparency. In this chapter we explore advanced forecasting tools for decision support in supply chain scenarios and provide preliminary simulation results from their impact on demand amplification. Preliminary results presented in this chapter, suggests that advanced methods may be useful to predict oscillated demand but their performance may be constrained by current structural and operating policies as well as limited availability of data. Improvements to reduce demand amplification, for example, may decrease the risk of out of stock but increase operating cost or risk of excess inventory.; Making sense of data may benefit from high volume data acquisition and analysis using GARCH and VAR-MGARCH (Datta et al 2007) techniques in addition to and in combination with other tools for forecasting and risk analysis in diverse verticals that may span from healthcare to energy (Datta 2008e). In this work, we explored the possibility of using advanced forecasting methods in context of supply chains and demonstrated financial profitability from use of the GARCH technique. It remains unexplored if concomitant business process transformation may be necessary to obtain even better results. The proposed advanced forecasting models...

Analyse von Finanzmarktdaten mittels multivariater GARCH-Modelle - Spill-Over-Effekte von Volatilitäten : EURO-Wechselkurs und Finanzmärkte in Europa; Multivariate GARCH-models and their application to financial markets - spill-over-effects of volatilities : the Euro and financial markets in Europe

Flad, Michael
Fonte: Universidade de Tubinga Publicador: Universidade de Tubinga
Tipo: Masterarbeit
DE_DE
Relevância na Pesquisa
37.47%
Die Bestimmung der Volatilität von Finanzmarktdaten ist heutzutage Kernpunkt empirischer Analysen im Bereich des Finance/Banking oder der monetären Makroökonomik. Dabei erweisen sich multivariate GARCH (MGARCH-) Modelle als besonders hilfreich, da mit ihnen wichtige empirische Eigenschaften von Finanzmarktdaten, wie z.B. Volatilitätscluster oder kontemporäre Korrelationen mehrerer Zeitreihen, leicht abzubilden sind. Es wird daher sowohl eine Übersicht über gängige und neuere MGARCH-Modelle als auch deren Schätzmethoden gegeben. Zusätzlich soll durch eine empirische Analyse herausgefunden werden, ob Spill-Over-Effekte zwischen Devisenmarkt, Geld- und Aktienmarkt in Europa existieren. Insbesondere kommen zwei bivariate MGARCH-Modelle (CCC-Modell nach Bollerslev und DCC-Modell nach Engel) mit zusätzlichen Erweiterungen zur Anwendung, um mögliche Volatilitätsbeziehen zwischen dem EUR/USD-Wechselkurs, dem kurzfristigen Zinssatz (EURIBOR) sowie dem EUROSTOXX zu testen. Zusätzlich wird untersucht, ob Politimplikationen hinsichtlich der Diskussion um flexible vs. fixe Wechselkursregime ökonometrisch abgeleitet werden können.; Modelling the volatility of financial market data is important for the empirical analysis of many issues in Finance/Banking and Macroeconomics. Especially multivariate GARCH (MGARCH-) models are crucial in describing prominent features of financial time series...

A multivariate generalized independent factor GARCH model with an application to financial stock returns

García-Ferrer, Antonio; González-Prieto, Ester; Peña, Daniel
Fonte: Universidade Carlos III de Madrid Publicador: Universidade Carlos III de Madrid
Tipo: Trabalho em Andamento Formato: application/pdf
Publicado em /12/2008 ENG
Relevância na Pesquisa
37.55%
We propose a new multivariate factor GARCH model, the GICA-GARCH model , where the data are assumed to be generated by a set of independent components (ICs). This model applies independent component analysis (ICA) to search the conditionally heteroskedastic latent factors. We will use two ICA approaches to estimate the ICs. The first one estimates the components maximizing their non-gaussianity, and the second one exploits the temporal structure of the data. After estimating the ICs, we fit an univariate GARCH model to the volatility of each IC. Thus, the GICA-GARCH reduces the complexity to estimate a multivariate GARCH model by transforming it into a small number of univariate volatility models. We report some simulation experiments to show the ability of ICA to discover leading factors in a multivariate vector of financial data. An empirical application to the Madrid stock market will be presented, where we compare the forecasting accuracy of the GICA-GARCH model versus the orthogonal GARCH one.

The power log-GARCH model

Sucarrat, Genaro; Escribano, Álvaro
Fonte: Universidade Carlos III de Madrid Publicador: Universidade Carlos III de Madrid
Tipo: Trabalho em Andamento Formato: application/pdf
Publicado em 09/06/2010 ENG
Relevância na Pesquisa
37.41%
Exponential models of autoregressive conditional heteroscedasticity (ARCH) are attractive in empirical analysis because they guarantee the non-negativity of volatility, and because they enable richer autoregressive dynamics. However, the currently available models exhibit stability only for a limited number of conditional densities, and the available estimation and inference methods in the case where the conditional density is unknown hold only under very specific and restrictive assumptions. Here, we provide results and simple methods that readily enables consistent estimation and inference of univariate and multivariate power log-GARCH models under very general and non-restrictive assumptions when the power is fixed, via vector ARMA representations. Additionally, stability conditions are obtained under weak assumptions, and the power log-GARCH model can be viewed as nesting certain classes of stochastic volatility models, including the common ASV(1) specification. Finally, our simulations and empirical applications suggest the model class is very useful in practice.

Data cloning estimation of GARCH and COGARCH models

Marín, J. Miguel; Rodríguez Bernal, M. T.; Romero, Eva
Fonte: Universidade Carlos III de Madrid Publicador: Universidade Carlos III de Madrid
Tipo: info:eu-repo/semantics/draft; info:eu-repo/semantics/workingPaper Formato: application/pdf
Publicado em /07/2013 ENG
Relevância na Pesquisa
37.47%
GARCH models include most of the stylized facts of financial time series and they have been largely used to analyze discrete financial time series. In the last years, continuous time models based on discrete GARCH models have been also proposed to deal with non-equally spaced observations, as COGARCH model based on Lévy processes. In this paper, we propose to use the data cloning methodology in order to obtain estimators of GARCH and COGARCH model parameters. Data cloning methodology uses a Bayesian approach to obtain approximate maximum likelihood estimators avoiding numerically maximization of the pseudo-likelihood function. After a simulation study for both GARCH and COGARCH models using data cloning, we apply this technique to model the behavior of some NASDAQ time series

Estimation du modèle GARCH à changement de régimes et son utilité pour quantifier le risque de modèle dans les applications financières en actuariat

Augustyniak, Maciej
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Thèse ou Mémoire numérique / Electronic Thesis or Dissertation
FR
Relevância na Pesquisa
37.65%
Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques...

Aggregations and Marginalization of GARCH and Stochastic Volatility Models

MEDDAHI, Nour; RENAULT, Éric
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Artigo de Revista Científica Formato: 3570049 bytes; application/pdf
Relevância na Pesquisa
37.76%
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions...

What best predicts realized and implied volatility: GARCH, GJR or FCGARCH?

Salgado, José
Fonte: Instituto Universitário de Lisboa Publicador: Instituto Universitário de Lisboa
Tipo: Dissertação de Mestrado
Publicado em //2011 ENG
Relevância na Pesquisa
37.61%
Master in Finance / JEL: C22, C52, C53; This thesis focuses on forecasting realized volatility (RV) and implied volatility (IV) on equity markets, a subject of major importance for volatility traders. The accuracy of IV and GARCH-type models to predict RV has been researched extensively. However, little work has been done to model IV. We test the accuracy of GARCH-type models (GARCH, GJR and FCGARCH) to forecast, one-day ahead, the VIX index (the chosen IV measure) and the S&P500 index's daily realized volatility. While futures on equity's IV are widely available, futures on RV appeared recently on foreign exchange markets. Yet, expansion to equity markets is expectable. Thus, this study is a rst step on developing a RV and IV futures trading strategy. From 2001 to 2010 the models were estimated based on daily data. Forecasts evaluation is based on the mean absolute error criteria and Diebold-Mariano test. We found the GJR/FCGARCH models to have the best performance on both RV and IV. From the results, one can also infer that GARCH-type models are more suitable to foresee IV than RV. A plausible deduction is that past returns and past variance have a higher impact on IV.; Esta tese centra-se na previsão de volatilidade realizada e volatilidade implícita nos mercados de capitais...

Modelos GARCH assimétricos com inovações t-Student; Texto para Discussão (TD) 1872: Modelos GARCH assimétricos com inovações t-Student; Asymmetric GARCH models with Student-t innovations

Fonseca, Thaís C. O.; Cerqueira, Vinícius S.; Migon, Hélio S.; Torres, Cristian A. C.
Fonte: Instituto de Pesquisa Econômica Aplicada (Ipea) Publicador: Instituto de Pesquisa Econômica Aplicada (Ipea)
Tipo: Texto para Discussão (TD)
PT-BR
Relevância na Pesquisa
37.41%
Neste trabalho, modela-se a volatilidade usando uma abordagem bayesiana para a estimação de modelos Generalizados Autorregressivos de Heterocedasticidade Condicional – Generalized Autoregressive Conditional Heteroskedasticity (GARCH). Eventuais assimetrias são acomodadas utilizando-se modelos de transição suave para a variância. Apresentam-se alguns problemas relacionados a esta abordagem e discute-se como estes influenciam o comportamento da função de verossimilhança. Para dados cujas distribuições apresentam caudas mais pesadas, utiliza-se a distribuição t-Student. Os problemas da verossimilhança derivados da estimação dos graus de liberdade são resolvidos usando a priori de Jeffrey. Um estudo simulado é apresentado para evidenciar o potencial da metodologia. Por fim, uma aplicação da metodologia a séries de índices de preços ao consumidor (IPCs) no Brasil revela as vantagens da utilização de modelos GARCH assimétricos com distribuição t-Student.; 31 p. : il.

A continous-time GARCH process driven by a Levy process: stationarity and second-order behaviour

Kluppelberg, Claudia; Lindner, Alexander; Maller, Ross
Fonte: Applied Probability Trust Publicador: Applied Probability Trust
Tipo: Artigo de Revista Científica
Relevância na Pesquisa
37.41%
We use a discrete-time analysis, giving necessary and sufficient conditions for the almost-sure convergence of ARCH(1) and GARCH(1, 1) discrete-time models, to suggest an extension of the ARCH and GARCH concepts to continuous-time processes. Our 'COGARCH' (continuous-time GARCH) model, based on a single background driving Lévy process, is different from, though related to, other continuous-time stochastic volatility models that have been proposed. The model generalises the essential features of discrete-time GARCH processes, and is amenable to further analysis, possessing useful Markovian and stationarity properties.