Página 1 dos resultados de 3 itens digitais encontrados em 0.005 segundos

Influence of cerium (IV) ions on the mechanism of organosilane polymerization and on the improvement of its barrier properties

SUEGAMA, P. H.; MELO, H. G. de; BENEDETTI, A. V.; AOKI, I. V.
Fonte: PERGAMON-ELSEVIER SCIENCE LTD Publicador: PERGAMON-ELSEVIER SCIENCE LTD
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
46.24%
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.

TiO2 nanoparticles as carries of 225Ac/213Bi in vivo generator

LESZCZUK Edyta; PIOTROWSKA A; BILEWICZ Aleksander; MORGENSTERN Alfred; BRUCHERTSEIFER Frank
Fonte: Oak Ridge National Laboratory Publicador: Oak Ridge National Laboratory
Tipo: Contributions to Conferences Formato: Printed
ENG
Relevância na Pesquisa
16.02%
Alpha particle emitting isotopes are in considerable interest for radionuclide therapy because of their high cytotoxicity and short path length. Unfortunately, all available emitters have serious disadvantages: 211At forms weak bond with carbon atoms in the biomolecule and in the case of 212Bi and 213Bi short half-life often limits the application of these nuclides. However, the short half-life of 212Bi and 213Bi could be effectively lengthened by binding the parent radionuclide 212Pb (t1/2 = 10.6 h) or 225Ac (t1/2 = 10 d) to the biomolecule, thereby effectively extending the use of short half-life 212Bi and 213Bi. In addition, in vivo generator delivers much greater dose per unit of administered activity compared to 212Bi and 213Bi alone. In our studies we investigated the use of TiO2 nanoparticles as potential carriers for 225Ac/213Bi in vivo generator. The TiO2 nanoparticles have unique properties like: high specific surface, high affinity for multivalent cations and simple way of synthesis, which are useful in the process of labelling. Commercially available (e.g. P-25 Degussa) and synthesised in our laboratory nanoparticles were used in experiments. The nanoparticles were characterized by TEM, SEM, DLS and NanoSight techniques. In our experiments we tested two different methods of labelling. The first one was based on the possibility of formation strong bonds with certain cations on the surface of the nanopraticles. In the second one...

TiO2 nanoparticles as carries of 225Ac/213Bi in vivo generators

LESZCZUK Edyta; PIOTROWSKA A; BILEWICZ Aleksander; MORGENSTERN Alfred; BRUCHERTSEIFER Frank
Fonte: University of Torino Publicador: University of Torino
Tipo: Contributions to Conferences Formato: Printed
ENG
Relevância na Pesquisa
16.02%
Alpha particle emitting isotopes are in considerable interest for radionuclide therapy because of their high cytotoxicity and short path length. Unfortunately, all available emitters have serious disadvantages: 211At forms weak bond with carbon atoms in the biomolecule and in the case of 212Bi, 213Bi and 226Th short half-life often limits the application of these nuclides. However, the short half-life of 212Bi and 213Bi could be effectively lengthened by binding the parent radionuclide 212Pb (t1/2 = 10.6 h) or 225Ac (t1/2 = 10 d) to a biomolecule, thereby effectively extending the use of short half-life 212Bi and 213Bi. In addition, in vivo generator delivers much greater dose per unit of administered activity compared to 212Bi and 213Bi alone. In our studies we investigated the use of TiO2 nanoparticles as potential carriers for 225Ac/213Bi in vivo generator. The TiO2 nanoparticles have special unique properties like: high specific surface, high affinity for multivalent cations and simple way of synthesis, which are useful in the process of labelling. Commercially available (e.g. P-25 Degussa) and synthesised in our laboratory nanoparticles were used in experiments. The nanoparticles were characterized by TEM, SEM, DLS and NanoSight techniques. In our experiments we tested two different methods of labeling. The first one was based on the possibility of formation strong bonds with certain cations on the surface of the nanopraticles. In the second one...