Página 1 dos resultados de 3154 itens digitais encontrados em 0.028 segundos

Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais; Bankruptcy prediction in brazilian companies with discriminant analysis, logistic regression and artificial neural networks

Castro Junior, Francisco Henrique Figueiredo de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 16/09/2003 PT
Relevância na Pesquisa
96.19%
Estudos com o objetivo de prever insolvência de empresas e que fazem uso de técnicas estatísticas modernas são conduzidos desde a década de 1960. Esta linha de pesquisa, que inicialmente usou técnicas univariadas, e em seguida incorporou as análises multivariadas, hoje emprega largamente técnicas que fazem uso de inteligência artificial e que necessitam uma grande capacidade de processamento computacional. Esta evolução trouxe melhorias contínuas aos resultados alcançados e hoje é possível afirmar que os demonstrativos financeiros de empresas quando analisados adequadamente são uma fonte importante de informação para a previsão de insolvência. Esta pesquisa teve como principal objetivo desenvolver e comparar modelos estatísticos usando as técnicas de Análise Discriminante Linear, Regressão Logística e Redes Neurais Artificiais a fim de investigar qual delas oferece os melhores resultados. A amostra foi composta por 40 empresas, divididas em dois grupos: o primeiro com empresas formalmente insolventes segundo os critérios da legislação brasileira, e o segundo com empresas sem tais problemas. Foram usadas inicialmente 16 variáveis para predição e empregou-se um critério de seleção de variáveis baseado nos melhores subconjuntos possíveis ao invés do stepwise. Foi tomado especial cuidado com os pré-requisitos das técnicas...

Redes neurais artificiais aplicadas à otimização de processos de deposição de filmes finos poliméricos. ; Artificial neural networks applied to the optimization of polymeric thin-films deposition processes.

Lima, John Paul Hempel
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 05/05/2006 PT
Relevância na Pesquisa
96.25%
Nesse trabalho é apresentado o estudo de redes neurais artificiais (RNAs) como sistemas de aprendizado, simulação e otimização de processos de deposição de filmes finos poliméricos. Duas técnicas de deposição comumente utilizadas para a fabricação de dispositivos eletrônicos e sensores poliméricos foram escolhidas: i) spin coating ou centrifugação e ii) automontagem. Na primeira técnica, a espessura final dos filmes finos obtidos foi a característica avaliada em função da velocidade de rotação, do tempo de rotação e da concentração da solução polimérica. Como material de deposição, utilizou-se a poli(o-metoxianilina) (POMA). Com a segunda técnica analisou-se a influência sobre a espessura, sobre a condutância elétrica e sobre o espectro de absorção, do número de bicamadas, do tempo de exposição dos filmes a uma solução dopante de ácido clorídrico (HCl) e do pH das mesmas. Os poliíons utilizados nessa técnica foram a polianilina (PAni) e o poli(vinil sulfato de sódio) (PVS). Os filmes obtidos pela segunda técnica de deposição constituem uma classe de sensores capazes de detectar e quantificar concentrações baixas de HCl diluído em água. Os treinamentos e simulações com redes neurais artificiais foram realizados apenas para a espessura dos filmes de POMA e a absorção dos filmes de PAni/PVS. Foram construídas redes neurais artificiais do tipo multilayer perceptron (MLP) utilizando o software MATLAB e o componente Neural Networks Toolbox. A reprodutibilidade e o número de neurônios contidos na camada intermediária foram avaliados. Os resultados mostram que as redes neurais artificiais treinadas fornecem boas respostas simuladas interpolando e extrapolando os valores experimentais utilizados. Como conclusão mostra-se que é possível a utilização dessa ferramenta para auxiliar a engenharia de processos...

Determinação do conteúdo harmônico de corrente baseada em redes neurais artificiais para cargas não-lineares monofásicas; Determination of the current harmonic content based on artificial neural networks for single-phase non-linear loads

Nascimento, Claudionor Francisco do
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 10/07/2007 PT
Relevância na Pesquisa
96.23%
Este trabalho apresenta um método utilizando redes neurais artificiais para a determinação das amplitudes e fases dos componentes harmônicos presentes na corrente de carga monofásica. O número de harmônicos identificados é previamente selecionado. Os hamônicos identificados estão presentes na corrente de cargas não-lineares de um sistema de iluminação onde é considerada a variação no tempo das características da forma de onda desta corrente. Os harmônicos presentes no sistema degradam a qualidade de energia, sendo assim é apresentado um breve estudo sobre este tema e métodos para atenuar a distorção harmônica no sistema. Dentre estes métodos é dado ênfase na aplicação de filtros ativos de potência em paralelo com carga não-linear. O trabalho também apresenta um estudo sobre os mais comumente métodos utilizados na identificação harmônica. Dentre eles está o método baseado em redes neurais artificiais. Este método é validado com base nos dados levantados por meio de simulação e de forma experimental.; In this thesis artificial neural networks are employed in a novel approach to identifying harmonic components of the single-phase nonlinear load current, whose amplitudes and phase angles are subject to unpredictable changes in steady-state. An identified harmonics number is previously selected. These harmonics are present in the non-linear loads current of electrical illumination system. The harmonics in the power system degrade the power quality...

O uso de redes neurais artificiais como ferramenta para auxiliar na determinação da vida útil de pavimentos flexíveis; Using artificial neural networks as a tool to assist in the evaluation of the remaining life of flexible pavements

Zanetti, Flavio Serpa
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 28/03/2008 PT
Relevância na Pesquisa
96.26%
Este trabalho apresenta um procedimento para auxiliar na determinação da vida útil de pavimentos flexíveis através da determinação de tensões e deformações causadas pela solicitação de um eixo padrão na estrutura de pavimentos flexíveis utilizando Redes Neurais Artificiais. Para treinamento e validação das redes foram utilizadas bacias de deflexões hipotéticas geradas com o auxílio do programa ELSYM5, simulando o carregamento com falling weight deflectometer. Foram criados quatro conjuntos de bacias hipotéticas, dois para pavimentos de três camadas e dois para pavimentos de quatro camadas. As redes neurais artificiais foram treinadas e validadas utilizando-se o simulador EasyNN-plus, que utiliza redes multilayer perceptron com algoritmo de aprendizagem backpropagation. Os dados de entrada das redes são as espessuras das camadas do pavimento e a bacia de deflexão. Como saída, têm-se as tensões e deformações na face inferior do revestimento e no topo do subleito e os módulos de resiliência das camadas do pavimento. Foram determinadas retas de regressão, coeficientes de regressão e histogramas de erros entre os valores reais (ELSYM5) e os valores previstos (RNA). Os resultados obtidos pelas redes neurais artificiais apresentaram boa correlação com os valores reais...

Fractais e redes neurais artificiais aplicados à previsão de retorno de ativos financeiros brasileiros; Fractals and artificial neural networks applied to return forecasting of Brazilian financial assets

Mendonça Neto, João Nunes de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 13/08/2014 PT
Relevância na Pesquisa
96.18%
Este estudo tem como problema de pesquisa a previsão de retorno de ativos financeiros. Buscou verificar a existência de relação entre memória ou dependência de longo prazo em séries temporais fractais e erro de previsão de retornos de ativos financeiros obtida por meio de Redes Neurais Artificiais (RNA). Espera-se que séries temporais fractais com maior memória de longo prazo permitam obter previsões com menor nível de erro, na medida em que a correlação entre os elementos da série favoreça a qualidade de previsão de RNA. Como medida de memória de longo prazo, foi calculado o expoente de Hurst de cada série temporal, o qual sofreu uma transformação para atuar como um índice de previsibilidade. Para medir o erro de previsão, foi utilizada a Raiz do Erro Quadrado Médio (REQM) produzida pela RNA em cada série temporal. O cálculo do expoente de Hurst foi realizado por meio do algoritmo da análise Rescaled Range (R/S). A arquitetura de RNA utilizada foi a de Rede Neural com Atraso Alimentada Adiante (TLFN), tendo como processo de aprendizagem supervisionada o modelo de retropropagação com gradiente descendente para minimização do erro. A amostra foi composta por ativos financeiros brasileiros negociados na Bolsa de Valores...

Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks

Brinhole, E. R.; Destro, J. F. Z.; Freitas, A. A. C. de; Alcantara, N. P. de
Fonte: Universidade Estadual Paulista Publicador: Universidade Estadual Paulista
Tipo: Conferência ou Objeto de Conferência Formato: 579-582
ENG
Relevância na Pesquisa
96.18%
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.

Controle ativo de vibrações usando redes neurais artificiais : Active vibration control using artificial neural networks; Active vibration control using artificial neural networks

William Camilo Ariza Zambrano
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 10/10/2013 PT
Relevância na Pesquisa
96.28%
Este trabalho tem como objetivo principal o estudo de um método de controle baseado no uso de redes neurais artificiais aplicado ao problema de controle de vibrações em estruturas flexíveis. Este trabalho centra-se no estudo do esquema de controle inverso-direto, que consiste em identificar a dinâmica inversa da planta através de uma rede neural artificial para ser usada como controlador. Três exemplos de aplicação foram resolvidos utilizando-se controladores projetados com o método inverso-direto. A primeira aplicação é o controle de vibrações em uma estrutura mecânica de parâmetros concentrados. O segundo exemplo de aplicação é o controle de vibrações de uma placa engastada em uma de suas extremidades. Neste caso, a placa engastada foi modelada utilizando-se o método de elementos finitos. No seguinte exemplo, o modelo da placa usado no exemplo anterior foi reduzido, deixando apenas os primeiros modos de vibração. No último exemplo tratou-se o problema de controle não colocado das vibrações em uma placa engastada. Os resultados foram analisados a partir da resposta temporal e da resposta em frequência do sistema em malha fechada. Para comparar os resultados obtidos utilizando-se o método de controle baseado em redes neurais artificiais...

Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks

Vicente, Henrique; Roseiro, José C.; Arteiro, José M.; Neves, José; Caldeira, A. Teresa
Fonte: National Research Council of Canada Publicador: National Research Council of Canada
Tipo: Artigo de Revista Científica
Publicado em //2013 ENG
Relevância na Pesquisa
96.18%
Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.; : Les biopesticides a` base de bactéries endophytes naturelles pour lutter contre les maladies des plantes constituent une alternative écologique aux traitements chimiques. Les espèces de Bacillus produisent une grande variété de métabolites biologiquement actifs tels que les lipopeptides ituriniques. Cette étude porte sur la production de biopesticides par des bactéries endophytes naturelles isolées du Quercus suber L. Des réseaux neuronaux artificiels ont été utilisés pour maximiser le pourcentage d’inhibition provoquée par l’activité antifongique des composés bioactifs produits par Bacillus amyloliquefaciens. Les composés actifs...

Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks

Vicente, Henrique; Roseiro, José; Arteiro, José; Neves, José; Caldeira, A. Teresa
Fonte: National Research Council of Canada Publicador: National Research Council of Canada
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
96.18%
Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.

Application of multivariable control using artificial neural networks in a debutanizer distillation column

Lopes, José Soares Batista; Popoff, Luiz Henrique G.; Silva, Rodrigo Eduardo Ferreira da; Vale, Marcelo Roberto Bastos Guerra; Araújo, Fabio Meneghetti Ugulino de; Gabriel Filho, Oscar; Maitelli, André Laurindo
Fonte: International Congress of Mechanical Engineering, 19 Publicador: International Congress of Mechanical Engineering, 19
Tipo: Artigo de Revista Científica
POR
Relevância na Pesquisa
96.19%
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007; Abstract. This work has as objective to develop a control strategy based on neural identification of a mutivariable input- mutivariable output (MIMO) process. The plant to control was simulated in software HYSYS as a classic debutanizer column. Debutanizer distillation column is used to remove the litht components from the gasoline stream to produce Liquefied Petroleum Gas (LPG). The quality control of the product taking away from the top of the tower is affected by the Outflow Control (FIC-100) and the Temperature Control (TIC-100).The process variables chosen are concentration of i-pentene existing in butanes stream and concentration of i-butene existing in C5+ stream. The manipulated variables chosen are reflux flow rate (the setpoint of FIC-100 in h/m3) and thermal load (the setpoint of TIC-100 in oC). The FIC- 100 is responsible for the control of reflux and the TIC-100 for the control of the temperature in the debutanizer column, changing its thermal load to keeping the C5+ production at acceptable level. The purpose is to substitute two physical controllers...

Previsão de Vazões Naturais Diárias Afluentes ao Reservatório da UHE Tucuruí Utilizando a Técnica de Redes Neurais Artificiais; Daily natural incoming flow to the reservoir Tucuruí using the technique of artificial neural networks

FERREIRA, Carlos da Costa
Fonte: Universidade Federal de Goiás; BR; UFG; Mestrado em Engenharia Elétrica e de Computação; Engenharia Publicador: Universidade Federal de Goiás; BR; UFG; Mestrado em Engenharia Elétrica e de Computação; Engenharia
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
96.19%
The forecast of natural flows to hydroelectric plant reservoirs is an essential input to the planning and programming of the SIN´s operation. Various computer models are used to determine these forecasts, including physical models, statistical models and the ones developed with the RNA´s techniques. Currently, the ONS performs daily forecasts of natural flows to the UHE Tucuruí based on the univariate stochastic model named PREVIVAZH, developed by Electric Energy Research Center - Eletrobras CEPEL. Throughout the last decade, several papers have shown evolution in the application of neural networks methodology in many areas, specially in the prediction of flows on a daily, weekly and monthly basis. The goal of this dissertation is to present and calibrate a model of natural flow forecast using the RNA´s methodology, more specifically the NSRBN (Non-Linear Sigmoidal Regression Blocks Networks) (VALENCA; LUDERMIR, 2001), on a time lapse from 1 to 12 days forward to the Tucuruí Hydroelectric Plant, considering the hydrometric stations data located upstream from it s reservoir. In addition, a comparative analysis of results found throughout the calibrated neural network and the ones released by ONS is performed. The results show the advantage of the methodology of artificial neural networks on autoregressive models. The Mean Absolute Percentage Error - MAPE values obtained were...

A Utilização de Redes Neurais Artificiais na Estimação da Cobertura do Sinal de Televisão Digital; The Use of Artificial Neural Networks in the Estimation of Coverage Digital TV Signal

SILVA, Douglas Dias da
Fonte: Universidade Federal de Goiás; BR; UFG; Mestrado em Engenharia Elétrica e de Computação; Engenharia Publicador: Universidade Federal de Goiás; BR; UFG; Mestrado em Engenharia Elétrica e de Computação; Engenharia
Tipo: Dissertação Formato: application/pdf
POR
Relevância na Pesquisa
96.17%
THIS works presents information about signal intensity obtained on field and from simulations for one-seg and full-seg receptions, the city of Goi ania. The values obtained from measurements were used for a comparisson among propagation models that are presented in literature, and the goal is to determine the real condition of digital TV signal in the region of Goi ania. The propagation models presented are available in literature and can be implemented in digital transmission system. The studied models were Free Space model, Log-Distance model, Hata model and ITU-R P.1546-1 method, and the objective was to determine the signal intensity of digital television transmission in the city of Goi ania (RAPPAPORT, 1996) (UNION, 2003). Focusing on the development of a tool for signal intensity estimation, some researches were done about neural networks theory and its applications. Perceptron and Multilayer Perceptron were the analised architectures, emphasyzing on the last one and on its supervisioned trainning through the backpropagation error algorithm (HAYKIN, 2001). The Brazilian Digital Television System was described by reference rules made by Associa¸c ao Brasileira de Normas T´ecnicas, which has detailed its transmission system and reception devices (T´ECNICAS...

Artificial Neural Networks: A prospective tool for the analysis of psychiatric disorders.

Galletly, C.; Clark, C.; McFarlane, A.
Fonte: CANADIAN PSYCHIATRIC ASSOC Publicador: CANADIAN PSYCHIATRIC ASSOC
Tipo: Artigo de Revista Científica
Publicado em //1996 EN
Relevância na Pesquisa
96.22%
Artificial neural networks are computer simulations of biological parallel distributed processing systems. They are able to undertake complex pattern recognition tasks, including diagnostic classification, prediction of disease onset and prognosis, and identification of determinants of clinical decisions. These capabilities have been utilized in general medicine, but as yet there has been little application of artificial neural networks in psychiatric research. Artificial neural networks can also be used to create models of brain function, providing a paradigm for cognition and the organization of neural systems that demonstrates how changes at the cellular level can affect information processing. These models are able to encompass both the biological and the behavioral dimensions of psychiatric disorders.

Design of artificial neural networks based on genetic algorithms to forecast time series

Peralta, Juan; Gutiérrez, Germán; Sanchis, Araceli
Fonte: Springer Publicador: Springer
Tipo: Parte de Livro Formato: application/octet-stream; application/octet-stream; application/pdf
Publicado em //2007 ENG
Relevância na Pesquisa
96.24%
In this work an initial approach to design Artificial Neural Networks to forecast time series is tackle, and the automatic process to design is carried out by a Genetic Algorithm. A key issue for these kinds of approaches is what information is included in the chromosome that represents an Artificial Neural Network. There are two principal ideas about this question: first, the chromosome contains information about parameters of the topology, architecture, learning parameters, etc. of the Artificial Neural Network, i.e. Direct Encoding Scheme; second, the chromosome contains the necessary information so that a constructive method gives rise to an Artificial Neural Network topology (or architecture), i.e. Indirect Encoding Scheme. The results for a Direct Encoding Scheme (in order to compare with Indirect Encoding Schemes developed in future works) to design Artificial Neural Networks for NN3 Forecasting Time Series Competition are shown.

ADANN: Automatic Design of Artificial Neural Networks

Peralta, Juan; Gutiérrez, Germán; Sanchis, Araceli
Fonte: Association for Computing Machinery (ACM) Publicador: Association for Computing Machinery (ACM)
Tipo: info:eu-repo/semantics/conferenceObject; info:eu-repo/semantics/bookPart Formato: text/plain; application/pdf
Publicado em //2008 ENG
Relevância na Pesquisa
96.27%
In this work an improvement of an initial approach to design Artificial Neural Networks to forecast Time Series is tackled, and the automatic process to design Artificial Neural Networks is carried out by a Genetic Algorithm. A key issue for these kinds of approaches is what information is included in the chromosome that represents an Artificial Neural Network. In this approach new information will be included into the chromosome so it will be possible to compare these results with those obtained in a previous approach. There are two principal ideas to take into account: first, the chromosome contains information about parameters of the topology, architecture, learning parameters, etc. of the Artificial Neural Network, i.e. Direct Encoding Scheme; second, the chromosome contains the necessary information so that a constructive method gives rise to an Artificial Neural Network topology (or architecture), i.e. Indirect Encoding Scheme. The results for a Direct Encoding Scheme (in order to compare with Indirect Encoding Schemes developed in future works) to design Artificial Neural Networks to forecast Time Series are shown.; The research reported here has been supported by the Ministry of Education and Science under project TRA2007-67374-C02-02.; Proceeding of: Genetic and Evolutionary Computation Conference...

Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution

Peralta, Juan; Li, Xiaodong; Gutiérrez, Germán; Sanchis, Araceli
Fonte: IEEE Publicador: IEEE
Tipo: info:eu-repo/semantics/publishedVersion; info:eu-repo/semantics/conferenceObject Formato: application/octet-stream; application/octet-stream; application/pdf
Publicado em //2010 ENG
Relevância na Pesquisa
96.18%
Accurate time series forecasting are important for displaying the manner in which the past continues to affect the future and for planning our day to-day activities. In recent years, a large literature has evolved on the use of evolving artificial neural networks (EANNs) in many forecasting applications. Evolving neural networks are particularly appealing because of their ability to model an unspecified nonlinear relationship between time series variables. This paper evaluates two methods to evolve neural networks architectures, one carried out with genetic algorithm and a second one carry out with differential evolution algorithm. A comparative study between these two methods, with a set of referenced time series will be shown. The object of this study is to try to improve the final forecasting getting an accurate system.; Proceeding of:IEEE World Congress on Computational Intelligence, (WCCI 2010) / 2010 International Joint Conference on Neural Networks (IJCNN 2010). July, 18-23, 2010. Barcelona, Spain.

Design of artificial neural networks based on genetic algorithms to forecast time series

Peralta, Juan; Gutiérrez, Germán; Sanchis, Araceli
Fonte: Springer Publicador: Springer
Tipo: info:eu-repo/semantics/acceptedVersion; info:eu-repo/semantics/conferenceObject; info:eu-repo/semantics/bookPart Formato: text/plain; application/pdf
Publicado em //2007 ENG
Relevância na Pesquisa
96.25%
In this work an initial approach to design Artificial Neural Networks to forecast time series is tackle, and the automatic process to design is carried out by a Genetic Algorithm. A key issue for these kinds of approaches is what information is included in the chromosome that represents an Artificial Neural Network. There are two principal ideas about this question: first, the chromosome contains information about parameters of the topology, architecture, learning parameters, etc. of the Artificial Neural Network, i.e. Direct Encoding Scheme; second, the chromosome contains the necessary information so that a constructive method gives rise to an Artificial Neural Network topology (or architecture), i.e. Indirect Encoding Scheme. The results for a Direct Encoding Scheme (in order to compare with Indirect Encoding Schemes developed in future works) to design Artificial Neural Networks for NN3 Forecasting Time Series Competition are shown.; Proceeding of: International Workshop on Hybrid Artificial Intelligence Systems, HAIS 2007 (CAEPIA 2007). 12-13 November, 2007, Salamanca, Spain.

Time series forecasting by evolving artificial neural networks using genetic algorithms and estimation of distribution algorithms

Peralta, Juan; Gutiérrez, Germán; Sanchis, Araceli
Fonte: IEEE Publicador: IEEE
Tipo: info:eu-repo/semantics/publishedVersion; info:eu-repo/semantics/conferenceObject; info:eu-repo/semantics/bookPart Formato: application/pdf; text/plain; application/pdf
Publicado em //2010 ENG
Relevância na Pesquisa
96.18%
Accurate time series forecasting are important for displaying the manner in which the past continues to affect the future and for planning our day to-day activities. In recent years, a large literature has evolved on the use of evolving artificial neural networks (EANNs) in many forecasting applications. Evolving neural networks are particularly appealing because of their ability to model an unspecified nonlinear relationship between time series variables. This paper evaluates two methods to evolve neural networks architectures, one carried out with genetic algorithm and a second one carry out with differential evolution algorithm. A comparative study between these two methods, with a set of referenced time series will be shown. The object of this study is to try to improve the final forecasting getting an accurate system.; The research reported here has been supported by the Spanish Ministry of Science and Innovation under project TRA2007-67374-C02-02.; Proceeding of: IEEE World Congress on Computational Intelligence, (WCCI 2010) / 2010 International Joint Conference on Neural Networks (IJCNN 2010). July, 18-23, 2010. Barcelona, Spain.

Chemometric classification of several olive cultivars from Trás-os-Montes region (Northeast of Portugal) using artificial neural networks

Peres, António M.; Baptista, Paula; Malheiro, R.; Dias, L.G.; Bento, Albino; Pereira, J.A.
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
96.26%
This work aimed to use artificial neural networks for fruit classification according to olive cultivar, as a tool to guarantee varietal authenticity. So, 70 samples, each one containing, in general, 40 olives, belonging to the six most representative olive cultivars of Trás-os-Montes region (Cobrançosa, Cordovil, Madural, Negrinha de Freixo, Santulhana and Verdeal Transmontana) were collected in different groves and during four crop years. Five quantitative morphological parameters were evaluated for each fruit and endocarp, respectively. In total, ten biometrical parameters were used together with a multilayer perceptron artificial neural network allowing the implementation of a classification model. Its performance was compared with that obtained using linear discriminant analysis. The best results were obtained using artificial neural networks. In fact, the external validation procedure for linear discriminant analysis, using olive data from olive trees not included in the model development, showed an overall sensibility and specificity in the order of 70% and varying between 45 and 97% for the individual cultivars. On the other hand, the artificial neural network model was able to correctly classify the same unknown olives with a global sensibility and specificity around 75%...

Classification of electroencephalogram signals using artificial neural networks

Rodrigues, Pedro Miguel; Teixeira, João Paulo
Fonte: Instituto Politécnico de Bragança Publicador: Instituto Politécnico de Bragança
Tipo: Conferência ou Objeto de Conferência
ENG
Relevância na Pesquisa
96.21%
The study of Artificial Neural Networks (ANN) has proved to be fascinating over the years and the development of these networks has grown strongly in recent years. The neural networks have come to be increasingly convincing methods for solving complex problems, through artificial intelligence. In particular this work focused on development of an artificial neural network for identifying diseases: Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis, based on signals from the Electroencephalogram (EEG). The phases of the project were developed through a number of operations implemented in Matlab. The Fourier transform was seen as the main technique of signal processing, in order to analyze and diagnose diseases in the study. The work consisted in the first stage process the EEG signals to serve as an entry into the ANN in order to reveal a distinctive feature in the different diseases studied, and then, create a model capable to distinguish the diseases. For this purpose 4 methodologies were used with different processing of the EEG signal. The 4 methodologies are compared in this paper.