Página 3 dos resultados de 1409 itens digitais encontrados em 0.003 segundos

Microelectrode array in mixed alkanethiol self-assembled monolayers: Electrochemical studies

Cancino, Juliana; Machado, Sergio Antonio Spinola
Fonte: PERGAMON-ELSEVIER SCIENCE LTD; OXFORD Publicador: PERGAMON-ELSEVIER SCIENCE LTD; OXFORD
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
26.94%
We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained...

Diamond microelectrodes for corrosion studies; Microeléctrodos de diamante para estudos de corrosão

Silva, Eduardo Luís Trindade da
Fonte: Universidade de Aveiro Publicador: Universidade de Aveiro
Tipo: Tese de Doutorado
ENG
Relevância na Pesquisa
26.94%
Este trabalho teve como objetivos a produção, caracterização e aplicação de microelétrodos (MEs) de diamante como sensores amperométricos e potenciométricos em sistemas de corrosão nos quais a agressividade do meio e a presença de produtos de corrosão, constituem obstáculos que podem diminuir o desempenho, ou inviabilizar a utilização, de outros tipos de sensores. Os microeléctrodos são baseados em filmes finos de diamante dopado com boro (BDD – Boron Doped Diamond) depositados sobre fios de tungsténio afiados, através do método de deposição química a partir da fase vapor, assistida por filamento quente (HFCVD – Hot Filament Chemical Vapor Deposition). A otimização das diversas etapas de fabricação dos MEs deu origem ao desenvolvimento de um novo sistema de afiamento eletroquímico para obtenção destes fios e a várias opções para a obtenção dos filmes de diamante condutor e seu isolamento com resinas para exposição apenas da ponta cilíndrica. A qualidade cristalina dos filmes de diamante foi avaliada por espectroscopia de Raman. Esta informação foi complementada com uma caracterização microestrutural dos filmes de diamante por microscopia eletrónica de varrimento (SEM), em que se fez a identificação da tipologia dos cristais como pertencendo às gamas de diamante nanocristalino ou microcristalino. Os filmes de BDD foram utilizados na sua forma não modificada...

The use of microelectrodes with AGNES

Huidobro, C.; Companys, E.; Puy, J.; Galceran, J.; Pinheiro, J. P.
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em //2007 ENG
Relevância na Pesquisa
26.94%
Absence of gradients and nernstian equilibrium stripping (AGNES) is a new electroanalytical technique designed to determine free heavy metal ion concentrations in solutions. AGNES had been applied, up to date, with conventional equipment such as the hanging mercury drop electrode (HMDE). Due to their much smaller volume, microelectrodes can reach a given preconcentration factor within a much shorter deposition time, so their use for AGNES has been evaluated in this work. For the particular case of the mercury microelectrode deposited onto an Ir disk (radius around 5 lm), AGNES has been successfully used for speciation purposes in the system Pb + PDCA (pyridinedicarboxylic acid). However, due to a relatively large capacitive current, which decays slowly, the limit of quantification for such microelectrodes has only been reduced by one half with respect to that of the HMDE.

Sensores eletroquímicos: considerações sobre mecanismos de funcionamento e aplicações no monitoramento de espécies químicas em ambientes microscópicos

Lowinsohn,Denise; Bertotti,Mauro
Fonte: Sociedade Brasileira de Química Publicador: Sociedade Brasileira de Química
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/12/2006 PT
Relevância na Pesquisa
26.94%
Electrochemical sensors have attracted considerable attention in recent years because they provide data about the chemical state of our surroundings and the dynamics of the chemical transformations in the form a spatially resolved image. Particular interest has been directed to measurements in restricted-volume samples as new technologies enable the fabrication of miniaturized versions of sensors with reproducible characteristics. Taking these aspects into consideration, this review focuses on the use of electrodes of micrometer dimensions to acquire chemical information in microdomains in which concentrations may not be spatially homogeneous. This is possible because microelectrodes allow fast-response measurements with micrometer resolution to be performed. On the other hand, the use of microelectrodes as amperometric sensors presents an inherent drawback owing to the insufficient specificity toward the substrate of interest. Hence, some comments on strategies to enhance the selectivity of amperometric sensors are also made. Finally, recent applications of structurally microscopic electrodes as in vivo sensors are shown, as well as a prospect of the future trend in this field.

Measuring Extracellular Ion Gradients from Single Channels with Ion-Selective Microelectrodes

Messerli, Mark A.; Corson, Erica D.; Smith, Peter J. S.
Fonte: The Biophysical Society Publicador: The Biophysical Society
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
Under many different conditions activated plasma membrane ion channels give rise to changes in the extracellular concentration of the permeant ion(s). The magnitude and duration of these changes are dependent on the electrochemical driving force(s) on the permeant ion(s) as well as conductance, open time, and channel density. We have modeled the change in the extracellular [K+] due to efflux through Ca2+-activated K+ channels, mSlo, to determine the range of parameters that would give rise to measurable signals in the surrounding media. Subsequently we have used extracellular, K+-selective microelectrodes to monitor localized changes in [K+]ext due to efflux through mSlo channels expressed in Xenopus oocytes. The rapid changes in [K+] show a close fit with the predicted model when the time response of the ion-selective microelectrode is taken into account, providing proof of the concept. Measurement of the change in extracellular ion concentration with ion-selective microelectrodes provides a noninvasive means for functional mapping of channel location and density, as well as characterizing the properties of ion channels in the plasma membrane.

Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites?

Giuliano, Chiara; Parikh, Vinay; Ward, Josh.R.; Chiamulera, Christian; Sarter, Martin
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
Previous experiments demonstrated that second-based transient increases in choline concentrations measured by electrodes coated with choline oxidase (ChOx) and the amperometric detection of hydrogen peroxide validly indicate the depolarization-dependent release of acetylcholine (ACh) and its hydrolysis by endogenous acetylcholinesterase (AChE). Therefore, choline-sensitive microelectrodes have become valuable tools in neuropharmacological and behavioral research. The present experiments were designed to test the possibility that co-immobilization of ChOx plus AChE on recording sites increases the level of detection for evoked ACh release in the brain. If newly released ACh is not completely hydrolyzed by endogenous AChE and capable of reaching the extracellular space, currents recorded via sites equipped with both enzymes should be greater when compared with sites coated with ChOx only. Pairs of Platinum-recordings sites were coated either with AChE plus ChOx or ChOx alone. Potassium or nicotine-evoked currents were recorded throughout the entire dorsal-ventral extent of the medial prefrontal cortex (mPFC). The amplitudes of evoked cholinergic signals did not differ significantly between AChE+ChOx and ChOx-only coated recording sites. Additional experiments controlling for several potential confounds suggested that...

Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines

Hermans, Andre; Seipel, Andrew T.; Miller, Charles E.; Wightman, R. Mark
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 28/02/2006 EN
Relevância na Pesquisa
26.94%
Elliptical and cylindrical geometries of carbon-fiber microelectrodes were modified by covalent attachment of 4-sulfobenzenediazonium tetrafluoroborate following its electroreduction. Elliptical electrodes fabricated from Thornel P-55 carbon fibers show the highest amount of 4-sulfobenzene attached to the electrode. Fast-scan cyclic voltammetry was used to compare the response to dopamine and other neurochemicals at these modified carbon-fiber microelectrodes. The grafted layer causes an increased sensitivity to dopamine and other positively charged analytes that is due to increased adsorption of analyte in the grafted layer. However, this layer remains permeable to negatively charged compounds. Modified electrodes retain the increased sensitivity for dopamine during measurements in mouse brain tissue.

Development of an array of ion-selective microelectrodes aimed for the monitoring of extracellular ionic activities

Guenat, Olivier T.; Generelli, Silvia; de Rooij, Nicolaas F.; Koudelka-Hep, Milena; Berthiaume, François; Yarmush, Martin L.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/11/2006 EN
Relevância na Pesquisa
26.94%
In this study we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipette-based ion-selective microelectrodes with a diameter of either 2 or 6 μm. This array is located at the bottom of a 200 μm wide and 350 μm deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near Nernstian slopes were obtained for potassium- (58.6 ± 0.8 mV/pK, n=15) and ammonium-selective microelectrodes (59.4 ± 3.9 mV/pNH4, n=13). The calibration curves were highly reproducible and showed an average drift of 4.4 ± 2.3 mV/h (n=10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.

Selective Detection of Endogenous Thiols Using Microchip-based Flow Analysis and Mercury/Gold Amalgam Microelectrodes

Batz, Nicholas G.; Martin, R. Scott
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
This paper describes the fabrication and characterization of thin-layer mercury/gold amalgam microelectrodes and their integration with microchip-based flow injection analysis. This microchip platform allows on-chip injection and lysis of erythrocytes followed by selective detection of intracellular glutathione (GSH) at low potentials. The thin-layer gold microelectrodes were amalgamated by electrodeposition of mercury. The electrodes produced a linear response for both GSH and cysteine in flow injection analysis studies utilizing both off-chip and on-chip injection. Comparative experiments using diamide and on-chip injection were performed to demonstrate the ability of the microchip device to detect changes in GSH concentration. Finally, rabbit erythrocyte samples (2% hematocrit) were injected and lysed on-chip and the amount of GSH detected corresponded to 312 amol/cell, which is in agreement with previously reported values. The selectivity, short time between injection and detection (∼5 s), and the continuous introduction of sample to the on-chip injector should enable the study of dynamically changing systems such as the glutathione redox system found in erythrocytes.

Carbon-Fiber Microelectrodes for In Vivo Applications

Huffman, Megan L.; Venton, B. Jill
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
Carbon-fiber microelectrodes (CFMEs) have been a useful tool for measuring rapid changes in neurotransmitters because of their small size, sensitivity, and good electrochemical properties. In this article, we highlight recent advances using CFMEs for measuring neurotransmitters in vivo. Dopamine has been a primary neurotransmitter of interest but direct electrochemical detection of other neurochemicals including nitric oxide and adenosine has also been investigated. Surface treatments have been studied to enhance electrode sensitivity, such as covalent modification or the addition of a layer of carbon nanotubes. Enzyme-modified microelectrodes that detect non-electroactive compounds further extend the usefulness of CFMEs beyond the traditional monoamines. CFMEs continue to be used in vivo to understand basic neurobiological mechanisms and the actions of pharmacological agents, including drugs of abuse. Advances in sensitivity and instrumentation now allow CFMEs to be used for measurements of natural dopamine release that occur during behavioral experiments. A new technique combining electrochemistry with electrophysiology at a single microelectrode facilitates a better understanding of neurotransmitter concentrations and their effects on cell firing. Future research in this field will likely concentrate on fabricating smaller electrodes and electrode arrays...

Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes

Abidian, Mohammad Reza; Martin, David C.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /03/2008 EN
Relevância na Pesquisa
26.94%
Neural prostheses transduce bioelectric signals to electronic signals at the interface between neural tissue and neural microelectrodes. A low impedance electrode-tissue interface is important for the quality of signal during recording as well as quantity of applied charge density during stimulation. However, neural microelectrode sites exhibit high impedance because of their small geometric surface area. Here we analyze nanostructured-conducting polymers that can be used to significantly decrease the impedance of microelectrode typically by about two orders of magnitude and increase the charge transfer capacity of microelectrodes by three orders of magnitude. In this study poly(pyrrole) (PPy) and poly(3, 4- ethylenedioxythiophene) (PEDOT) nanotubes were electrochemically polymerized on the surface of neural microelectrode sites (1250 μm2). An equivalent circuit model comprising a coating capacitance in parallel with a pore resistance and interface impedance in series was developed and fitted to experimental results to characterize the physical and electrical properties of the interface. To confirm that the fitting parameters correlate with physical quantities of interface, theoretical equations were used to calculate the parameter values thereby validating the proposed model. Finally...

Nonhermetic Encapsulation Materials for MEMS-Based Movable Microelectrodes for Long-Term Implantation in the Brain

Jackson, Nathan; Anand, Sindhu; Okandan, Murat; Muthuswamy, Jit
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/01/2009 EN
Relevância na Pesquisa
26.94%
In this paper, we have fabricated and tested several composite materials with a mesh matrix, which are used as encapsulation materials for a novel implantable movable-microelectrode microelectromechanical-system (MEMS) device. Since movable microelectrodes extend off the edge of the MEMS chip and penetrate the brain, a hermetically sealed encapsulation was not feasible. An encapsulation material is needed to prevent cerebral-spinal-fluid entry that could cause failure of the MEMS device and, at the same time, allow for penetration by the microelectrodes. Testing of potential encapsulation materials included penetration-force measurements, gross-leak testing, maximum-pressure testing, and biocompatibility testing. Penetration-force tests showed that untreated mesh matrices and silicone-gel-mesh composites required the least amount of force to penetrate for both nylon 6,6 and polypropylene meshes. The silicone-gel-, poly(dimethylsiloxane)-, polyimide-, and fluoroacrylate-mesh composites with the nylon-mesh matrix were all able to withstand pressures above the normal intracranial pressures. Fourier-transform infrared-spectroscopy analysis and visual inspection of the implanted devices encapsulated by the silicone-gel-mesh composite showed that there was no fluid or debris entry at two and four weeks postimplantation. We conclude that a composite of nylon and silicone-gel meshes will meet the needs of the new generation of implantable devices that require nonhermetic encapsulation.

Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining

McCarthy, Patrick T.; Otto, Kevin J.; Rao, Masaru P.
Fonte: Springer US Publicador: Springer US
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
Neural prosthetic interfaces based upon penetrating microelectrode devices have broadened our understanding of the brain and have shown promise for restoring neurological functions lost to disease, stroke, or injury. However, the eventual viability of such devices for use in the treatment of neurological dysfunction may be ultimately constrained by the intrinsic brittleness of silicon, the material most commonly used for manufacture of penetrating microelectrodes. This brittleness creates predisposition for catastrophic fracture, which may adversely affect the reliability and safety of such devices, due to potential for fragmentation within the brain. Herein, we report the development of titanium-based penetrating microelectrodes that seek to address this potential future limitation. Titanium provides advantage relative to silicon due to its superior fracture toughness, which affords potential for creation of robust devices that are resistant to catastrophic failure. Realization of these devices is enabled by recently developed techniques which provide opportunity for fabrication of high-aspect-ratio micromechanical structures in bulk titanium substrates. Details are presented regarding the design, fabrication, mechanical testing, in vitro functional characterization...

Antifouling Self-assembled Monolayers on Microelectrodes for Patterning Biomolecules

Noel, John; Teizer, Winfried; Hwang, Wonmuk
Fonte: MyJove Corporation Publicador: MyJove Corporation
Tipo: Artigo de Revista Científica
Publicado em 25/08/2009 EN
Relevância na Pesquisa
26.94%
We present a procedure for forming a poly(ethylene glycol) (PEG) trimethoxysilane self-assembled monolayer (SAM) on a silicon substrate with gold microelectrodes. The PEG-SAM is formed in a single assembly step and prevents biofouling on silicon and gold surfaces. The SAM is used to coat microelectrodes patterned with standard, positive-tone lithography. Using the microtubule as an example, we apply a DC voltage to induce electrophoretic migration to the SAM-coated electrode in a reversible manner. A flow chamber is used for imaging the electrophoretic migration and microtubule patterning in situ using epifluorescence microscopy. This method is generally applicable to biomolecule patterning, as it employs electrophoresis to immobilize target molecules and thus does not require specific molecular interactions. Further, it avoids problems encountered when attempting to pattern the SAM molecules directly using lithographic techniques. The compatibility with electron beam lithography allows this method to be used to pattern biomolecules at the nanoscale.

A handheld preconcentrator for the rapid collection of cancerous cells using dielectrophoresis generated by circular microelectrodes in stepping electric fields

Jen, Chun-Ping; Chang, Ho-Hsien
Fonte: American Institute of Physics Publicador: American Institute of Physics
Tipo: Artigo de Revista Científica
Publicado em 18/07/2011 EN
Relevância na Pesquisa
26.94%
The ability to concentrate biological cells, such as circulating tumor cells, circulating fetal cells, and stem cells, is an important issue in medical diagnostics and characterization. The present study develops a handheld device capable of effectively preconcentrating cancerous cells. Circular microelectrodes were designed to generate a stepping electric field by switching the electric field to an adjacent electrode pair by relays. Cancerous cells with a positive dielectrophoretic response are guided toward the center of the circular microelectrodes due to the region of high electric field between the adjacent electrodes being gradually decreased in the direction of the stepping electric field. Numerical simulations of the electric fields were performed to demonstrate the concept of the proposed design. The preconcentration of HeLa cells, which are a human cervical carcinoma cell line, was achieved in 160 s with an efficiency of around 76%, with an applied peak-to-peak voltage of 16 V at a frequency of 1 MHz.

Nafion-CNT Coated Carbon-Fiber Microelectrodes for Enhanced Detection of Adenosine

Ross, Ashley E.; Venton, B. Jill
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
Adenosine is a neuromodulator that regulates neurotransmission. Adenosine can be monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes and ATP is a possible interferent in vivo because the electroactive moiety, adenine, is the same for both molecules. In this study, we investigated carbon-fiber microelectrodes coated with Nafion and carbon nanotubes (CNTs) to enhance the sensitivity of adenosine and decrease interference by ATP. Electrodes coated in 0.05 mg/mL CNTs in Nafion had a 4.2 ± 0.2 fold increase in current for adenosine, twice as large as for Nafion alone. Nafion-CNT electrodes were 6 times more sensitive to adenosine than ATP. The Nafion-CNT coating did not slow the temporal response of the electrode. Comparing different purine bases shows that the presence of an amine group enhances sensitivity and that purines with carbonyl groups, such as guanine and hypoxanthine, do not have as great an enhancement after Nafion-CNT coating. The ribose group provides additional sensitivity enhancement for adenosine over adenine. The Nafion-CNT modified electrodes exhibited significantly more current for adenosine than ATP in brain slices. Therefore, Nafion-CNT modified electrodes are useful for sensitive, selective detection of adenosine in biological samples.

Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes

Fendyur, Anna; Spira, Micha E.
Fonte: Frontiers Media S.A. Publicador: Frontiers Media S.A.
Tipo: Artigo de Revista Científica
Publicado em 24/08/2012 EN
Relevância na Pesquisa
26.94%
Cardiological research greatly rely on the use of cultured primary cardiomyocytes (CMs). The prime methodology to assess CM network electrophysiology is based on the use of extracellular recordings by substrate-integrated planar Micro-Electrode Arrays (MEAs). Whereas this methodology permits simultaneous, long-term monitoring of the CM electrical activity, it limits the information to extracellular field potentials (FPs). The alternative method of intracellular action potentials (APs) recordings by sharp- or patch-microelectrodes is limited to a single cell at a time. Here, we began to merge the advantages of planar MEA and intracellular microelectrodes. To that end we cultured rat CM on micrometer size protruding gold mushroom-shaped microelectrode (gMμEs) arrays. Cultured CMs engulf the gMμE permitting FPs recordings from individual cells. Local electroporation of a CM converts the extracellular recording configuration to attenuated intracellular APs with shape and duration similar to those recorded intracellularly. The procedure enables to simultaneously record APs from an unlimited number of CMs. The electroporated membrane spontaneously recovers. This allows for repeated recordings from the same CM a number of times (>8) for over 10 days. The further development of CM-gMμE configuration opens up new venues for basic and applied biomedical research.

Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces

Kozai, Takashi D. Yoshida; Langhals, Nicholas B.; Patel, Paras R.; Deng, Xiaopei; Zhang, Huanan; Smith, Karen L.; Lahann, Joerg; Kotov, Nicholas A.; Kipke, Daryl R.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants.

Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes

Shah, Sunny S.; Lee, Ji Youn; Verkhoturov, Stanislav; Tuleuova, Nazgul; Schweikert, Emile A.; Ramanculov, Erlan; Revzin, Alexander
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
This paper describes a novel approach of controlling cell-surface interactions through an electrochemical “switching” of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte–ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (−1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to “switch” chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future...

In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes

Harris, J P; Hess, A E; Rowan, S J; Weder, C; Zorman, C A; Tyler, D J; Capadona, J R
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
EN
Relevância na Pesquisa
26.94%
We recently introduced a series of stimuli-responsive, mechanically-adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet becomes mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E’ = ~5 GPa) than the neat polymer microprobes (E’ = ~2 GPa) and could sustain higher loads (~17 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of inserting into cortical tissue. Further, we demonstrated the material’s ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to 8 weeks demonstrated increased cell density at the microelectrode-tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially other biomedical applications.